Mister Exam

Other calculators

Integral of x^2+5*x+4 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |  / 2          \   
 |  \x  + 5*x + 4/ dx
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \left(\left(x^{2} + 5 x\right) + 4\right)\, dx$$
Integral(x^2 + 5*x + 4, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of is when :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                       
 |                                3      2
 | / 2          \                x    5*x 
 | \x  + 5*x + 4/ dx = C + 4*x + -- + ----
 |                               3     2  
/                                         
$$\int \left(\left(x^{2} + 5 x\right) + 4\right)\, dx = C + \frac{x^{3}}{3} + \frac{5 x^{2}}{2} + 4 x$$
The graph
The answer [src]
41/6
$$\frac{41}{6}$$
=
=
41/6
$$\frac{41}{6}$$
41/6
Numerical answer [src]
6.83333333333333
6.83333333333333

    Use the examples entering the upper and lower limits of integration.