Mister Exam

Other calculators


2x(x^2+1)^5

Integral of 2x(x^2+1)^5 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |              5   
 |      / 2    \    
 |  2*x*\x  + 1/  dx
 |                  
/                   
0                   
012x(x2+1)5dx\int\limits_{0}^{1} 2 x \left(x^{2} + 1\right)^{5}\, dx
Integral((2*x)*(x^2 + 1)^5, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=x2+1u = x^{2} + 1.

      Then let du=2xdxdu = 2 x dx and substitute dudu:

      u5du\int u^{5}\, du

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        u5du=u66\int u^{5}\, du = \frac{u^{6}}{6}

      Now substitute uu back in:

      (x2+1)66\frac{\left(x^{2} + 1\right)^{6}}{6}

    Method #2

    1. Rewrite the integrand:

      2x(x2+1)5=2x11+10x9+20x7+20x5+10x3+2x2 x \left(x^{2} + 1\right)^{5} = 2 x^{11} + 10 x^{9} + 20 x^{7} + 20 x^{5} + 10 x^{3} + 2 x

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        2x11dx=2x11dx\int 2 x^{11}\, dx = 2 \int x^{11}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x11dx=x1212\int x^{11}\, dx = \frac{x^{12}}{12}

        So, the result is: x126\frac{x^{12}}{6}

      1. The integral of a constant times a function is the constant times the integral of the function:

        10x9dx=10x9dx\int 10 x^{9}\, dx = 10 \int x^{9}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x9dx=x1010\int x^{9}\, dx = \frac{x^{10}}{10}

        So, the result is: x10x^{10}

      1. The integral of a constant times a function is the constant times the integral of the function:

        20x7dx=20x7dx\int 20 x^{7}\, dx = 20 \int x^{7}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x7dx=x88\int x^{7}\, dx = \frac{x^{8}}{8}

        So, the result is: 5x82\frac{5 x^{8}}{2}

      1. The integral of a constant times a function is the constant times the integral of the function:

        20x5dx=20x5dx\int 20 x^{5}\, dx = 20 \int x^{5}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x5dx=x66\int x^{5}\, dx = \frac{x^{6}}{6}

        So, the result is: 10x63\frac{10 x^{6}}{3}

      1. The integral of a constant times a function is the constant times the integral of the function:

        10x3dx=10x3dx\int 10 x^{3}\, dx = 10 \int x^{3}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

        So, the result is: 5x42\frac{5 x^{4}}{2}

      1. The integral of a constant times a function is the constant times the integral of the function:

        2xdx=2xdx\int 2 x\, dx = 2 \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: x2x^{2}

      The result is: x126+x10+5x82+10x63+5x42+x2\frac{x^{12}}{6} + x^{10} + \frac{5 x^{8}}{2} + \frac{10 x^{6}}{3} + \frac{5 x^{4}}{2} + x^{2}

  2. Now simplify:

    (x2+1)66\frac{\left(x^{2} + 1\right)^{6}}{6}

  3. Add the constant of integration:

    (x2+1)66+constant\frac{\left(x^{2} + 1\right)^{6}}{6}+ \mathrm{constant}


The answer is:

(x2+1)66+constant\frac{\left(x^{2} + 1\right)^{6}}{6}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                
 |                                6
 |             5          / 2    \ 
 |     / 2    \           \x  + 1/ 
 | 2*x*\x  + 1/  dx = C + ---------
 |                            6    
/                                  
2x(x2+1)5dx=C+(x2+1)66\int 2 x \left(x^{2} + 1\right)^{5}\, dx = C + \frac{\left(x^{2} + 1\right)^{6}}{6}
The graph
0.001.000.100.200.300.400.500.600.700.800.900100
The answer [src]
21/2
212\frac{21}{2}
=
=
21/2
212\frac{21}{2}
21/2
Numerical answer [src]
10.5
10.5
The graph
Integral of 2x(x^2+1)^5 dx

    Use the examples entering the upper and lower limits of integration.