Mister Exam

Other calculators

Integral of x^2+5x-14 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 27                   
 --                   
 10                   
  /                   
 |                    
 |  / 2           \   
 |  \x  + 5*x - 14/ dx
 |                    
/                     
23                    
--                    
10                    
23102710((x2+5x)14)dx\int\limits_{\frac{23}{10}}^{\frac{27}{10}} \left(\left(x^{2} + 5 x\right) - 14\right)\, dx
Integral(x^2 + 5*x - 14, (x, 23/10, 27/10))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      1. The integral of a constant times a function is the constant times the integral of the function:

        5xdx=5xdx\int 5 x\, dx = 5 \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: 5x22\frac{5 x^{2}}{2}

      The result is: x33+5x22\frac{x^{3}}{3} + \frac{5 x^{2}}{2}

    1. The integral of a constant is the constant times the variable of integration:

      (14)dx=14x\int \left(-14\right)\, dx = - 14 x

    The result is: x33+5x2214x\frac{x^{3}}{3} + \frac{5 x^{2}}{2} - 14 x

  2. Now simplify:

    x(2x2+15x84)6\frac{x \left(2 x^{2} + 15 x - 84\right)}{6}

  3. Add the constant of integration:

    x(2x2+15x84)6+constant\frac{x \left(2 x^{2} + 15 x - 84\right)}{6}+ \mathrm{constant}


The answer is:

x(2x2+15x84)6+constant\frac{x \left(2 x^{2} + 15 x - 84\right)}{6}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                         
 |                                  3      2
 | / 2           \                 x    5*x 
 | \x  + 5*x - 14/ dx = C - 14*x + -- + ----
 |                                 3     2  
/                                           
((x2+5x)14)dx=C+x33+5x2214x\int \left(\left(x^{2} + 5 x\right) - 14\right)\, dx = C + \frac{x^{3}}{3} + \frac{5 x^{2}}{2} - 14 x
The graph
2.702.302.352.402.452.502.552.602.65-2525
The answer [src]
1429
----
750 
1429750\frac{1429}{750}
=
=
1429
----
750 
1429750\frac{1429}{750}
1429/750
Numerical answer [src]
1.90533333333334
1.90533333333334

    Use the examples entering the upper and lower limits of integration.