Integral of x^2+5x-14 dx
The solution
Detail solution
-
Integrate term-by-term:
-
Integrate term-by-term:
-
The integral of xn is n+1xn+1 when n=−1:
∫x2dx=3x3
-
The integral of a constant times a function is the constant times the integral of the function:
∫5xdx=5∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
So, the result is: 25x2
The result is: 3x3+25x2
-
The integral of a constant is the constant times the variable of integration:
∫(−14)dx=−14x
The result is: 3x3+25x2−14x
-
Now simplify:
6x(2x2+15x−84)
-
Add the constant of integration:
6x(2x2+15x−84)+constant
The answer is:
6x(2x2+15x−84)+constant
The answer (Indefinite)
[src]
/
| 3 2
| / 2 \ x 5*x
| \x + 5*x - 14/ dx = C - 14*x + -- + ----
| 3 2
/
∫((x2+5x)−14)dx=C+3x3+25x2−14x
The graph
7501429
=
7501429
Use the examples entering the upper and lower limits of integration.