Mister Exam

Other calculators

Integral of x^2+5x-14 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 27                   
 --                   
 10                   
  /                   
 |                    
 |  / 2           \   
 |  \x  + 5*x - 14/ dx
 |                    
/                     
23                    
--                    
10                    
$$\int\limits_{\frac{23}{10}}^{\frac{27}{10}} \left(\left(x^{2} + 5 x\right) - 14\right)\, dx$$
Integral(x^2 + 5*x - 14, (x, 23/10, 27/10))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of is when :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                  3      2
 | / 2           \                 x    5*x 
 | \x  + 5*x - 14/ dx = C - 14*x + -- + ----
 |                                 3     2  
/                                           
$$\int \left(\left(x^{2} + 5 x\right) - 14\right)\, dx = C + \frac{x^{3}}{3} + \frac{5 x^{2}}{2} - 14 x$$
The graph
The answer [src]
1429
----
750 
$$\frac{1429}{750}$$
=
=
1429
----
750 
$$\frac{1429}{750}$$
1429/750
Numerical answer [src]
1.90533333333334
1.90533333333334

    Use the examples entering the upper and lower limits of integration.