Mister Exam

Other calculators

Integral of x^2+3xy^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |  / 2        2\   
 |  \x  + 3*x*y / dx
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \left(x^{2} + 3 x y^{2}\right)\, dx$$
Integral(x^2 + (3*x)*y^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                         3      2  2
 | / 2        2\          x    3*x *y 
 | \x  + 3*x*y / dx = C + -- + -------
 |                        3       2   
/                                     
$$\int \left(x^{2} + 3 x y^{2}\right)\, dx = C + \frac{x^{3}}{3} + \frac{3 x^{2} y^{2}}{2}$$
The answer [src]
       2
1   3*y 
- + ----
3    2  
$$\frac{3 y^{2}}{2} + \frac{1}{3}$$
=
=
       2
1   3*y 
- + ----
3    2  
$$\frac{3 y^{2}}{2} + \frac{1}{3}$$
1/3 + 3*y^2/2

    Use the examples entering the upper and lower limits of integration.