Mister Exam

Other calculators


x^2*exp((-x^2)/2)

Integral of x^2*exp((-x^2)/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |        2    
 |      -x     
 |      ----   
 |   2   2     
 |  x *e     dx
 |             
/              
0              
$$\int\limits_{0}^{1} x^{2} e^{\frac{\left(-1\right) x^{2}}{2}}\, dx$$
Integral(x^2*exp((-x^2)/2), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

      ErfRule(a=-1/2, b=0, c=0, context=exp(-x**2/2), symbol=x)

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                                                                
 |                                /                                              2 \                               
 |       2                        |     /    ___\         /    ___\            -x  |                      /    ___\
 |     -x                         |     |x*\/ 2 |    2    |x*\/ 2 |            ----|     ___   ____  2    |x*\/ 2 |
 |     ----                       |  erf|-------|   x *erf|-------|       ___   2  |   \/ 2 *\/ pi *x *erf|-------|
 |  2   2              ___   ____ |     \   2   /         \   2   /   x*\/ 2 *e    |                      \   2   /
 | x *e     dx = C - \/ 2 *\/ pi *|- ------------ + --------------- + -------------| + ----------------------------
 |                                |       2                2                 ____  |                2              
/                                 \                                      2*\/ pi   /                               
$$\int x^{2} e^{\frac{\left(-1\right) x^{2}}{2}}\, dx = C + \frac{\sqrt{2} \sqrt{\pi} x^{2} \operatorname{erf}{\left(\frac{\sqrt{2} x}{2} \right)}}{2} - \sqrt{2} \sqrt{\pi} \left(\frac{x^{2} \operatorname{erf}{\left(\frac{\sqrt{2} x}{2} \right)}}{2} + \frac{\sqrt{2} x e^{- \frac{x^{2}}{2}}}{2 \sqrt{\pi}} - \frac{\operatorname{erf}{\left(\frac{\sqrt{2} x}{2} \right)}}{2}\right)$$
The graph
The answer [src]
                          /  ___\
            ___   ____    |\/ 2 |
          \/ 2 *\/ pi *erf|-----|
   -1/2                   \  2  /
- e     + -----------------------
                     2           
$$- \frac{1}{e^{\frac{1}{2}}} + \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left(\frac{\sqrt{2}}{2} \right)}}{2}$$
=
=
                          /  ___\
            ___   ____    |\/ 2 |
          \/ 2 *\/ pi *erf|-----|
   -1/2                   \  2  /
- e     + -----------------------
                     2           
$$- \frac{1}{e^{\frac{1}{2}}} + \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left(\frac{\sqrt{2}}{2} \right)}}{2}$$
-exp(-1/2) + sqrt(2)*sqrt(pi)*erf(sqrt(2)/2)/2
Numerical answer [src]
0.249093732179515
0.249093732179515
The graph
Integral of x^2*exp((-x^2)/2) dx

    Use the examples entering the upper and lower limits of integration.