1 / | | 2 | -x | ---- | 2 2 | x *e dx | / 0
Integral(x^2*exp((-x^2)/2), (x, 0, 1))
Use integration by parts:
Let and let .
Then .
To find :
ErfRule(a=-1/2, b=0, c=0, context=exp(-x**2/2), symbol=x)
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Don't know the steps in finding this integral.
But the integral is
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | / 2 \ | 2 | / ___\ / ___\ -x | / ___\ | -x | |x*\/ 2 | 2 |x*\/ 2 | ----| ___ ____ 2 |x*\/ 2 | | ---- | erf|-------| x *erf|-------| ___ 2 | \/ 2 *\/ pi *x *erf|-------| | 2 2 ___ ____ | \ 2 / \ 2 / x*\/ 2 *e | \ 2 / | x *e dx = C - \/ 2 *\/ pi *|- ------------ + --------------- + -------------| + ---------------------------- | | 2 2 ____ | 2 / \ 2*\/ pi /
/ ___\
___ ____ |\/ 2 |
\/ 2 *\/ pi *erf|-----|
-1/2 \ 2 /
- e + -----------------------
2
=
/ ___\
___ ____ |\/ 2 |
\/ 2 *\/ pi *erf|-----|
-1/2 \ 2 /
- e + -----------------------
2
-exp(-1/2) + sqrt(2)*sqrt(pi)*erf(sqrt(2)/2)/2
Use the examples entering the upper and lower limits of integration.