Mister Exam

Other calculators

Integral of x^2*cos(sqrt(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                 
  /                 
 |                  
 |   2    /  ___\   
 |  x *cos\\/ x / dx
 |                  
/                   
0                   
$$\int\limits_{0}^{\infty} x^{2} \cos{\left(\sqrt{x} \right)}\, dx$$
Integral(x^2*cos(sqrt(x)), (x, 0, oo))
The answer (Indefinite) [src]
  /                                                                                                                                           
 |                                                                                                                                            
 |  2    /  ___\                 /  ___\            /  ___\       3/2    /  ___\      5/2    /  ___\       2    /  ___\         ___    /  ___\
 | x *cos\\/ x / dx = C + 240*cos\\/ x / - 120*x*cos\\/ x / - 40*x   *sin\\/ x / + 2*x   *sin\\/ x / + 10*x *cos\\/ x / + 240*\/ x *sin\\/ x /
 |                                                                                                                                            
/                                                                                                                                             
$$\int x^{2} \cos{\left(\sqrt{x} \right)}\, dx = C + 2 x^{\frac{5}{2}} \sin{\left(\sqrt{x} \right)} - 40 x^{\frac{3}{2}} \sin{\left(\sqrt{x} \right)} + 240 \sqrt{x} \sin{\left(\sqrt{x} \right)} + 10 x^{2} \cos{\left(\sqrt{x} \right)} - 120 x \cos{\left(\sqrt{x} \right)} + 240 \cos{\left(\sqrt{x} \right)}$$

    Use the examples entering the upper and lower limits of integration.