Mister Exam

Other calculators

Integral of (x^2-2xy)+(2xy+y^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                             
  /                             
 |                              
 |  / 2                    2\   
 |  \x  - 2*x*y + 2*x*y + y / dx
 |                              
/                               
0                               
01((x22xy)+(2xy+y2))dx\int\limits_{0}^{1} \left(\left(x^{2} - 2 x y\right) + \left(2 x y + y^{2}\right)\right)\, dx
Integral(x^2 - 2*x*y + (2*x)*y + y^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (2xy)dx=y2xdx\int \left(- 2 x y\right)\, dx = - y \int 2 x\, dx

        1. The integral of a constant times a function is the constant times the integral of the function:

          2xdx=2xdx\int 2 x\, dx = 2 \int x\, dx

          1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

            xdx=x22\int x\, dx = \frac{x^{2}}{2}

          So, the result is: x2x^{2}

        So, the result is: x2y- x^{2} y

      The result is: x33x2y\frac{x^{3}}{3} - x^{2} y

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        2xydx=y2xdx\int 2 x y\, dx = y \int 2 x\, dx

        1. The integral of a constant times a function is the constant times the integral of the function:

          2xdx=2xdx\int 2 x\, dx = 2 \int x\, dx

          1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

            xdx=x22\int x\, dx = \frac{x^{2}}{2}

          So, the result is: x2x^{2}

        So, the result is: x2yx^{2} y

      1. The integral of a constant is the constant times the variable of integration:

        y2dx=xy2\int y^{2}\, dx = x y^{2}

      The result is: x2y+xy2x^{2} y + x y^{2}

    The result is: x33+xy2\frac{x^{3}}{3} + x y^{2}

  2. Now simplify:

    x(x23+y2)x \left(\frac{x^{2}}{3} + y^{2}\right)

  3. Add the constant of integration:

    x(x23+y2)+constantx \left(\frac{x^{2}}{3} + y^{2}\right)+ \mathrm{constant}


The answer is:

x(x23+y2)+constantx \left(\frac{x^{2}}{3} + y^{2}\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                            
 |                                     3       
 | / 2                    2\          x       2
 | \x  - 2*x*y + 2*x*y + y / dx = C + -- + x*y 
 |                                    3        
/                                              
((x22xy)+(2xy+y2))dx=C+x33+xy2\int \left(\left(x^{2} - 2 x y\right) + \left(2 x y + y^{2}\right)\right)\, dx = C + \frac{x^{3}}{3} + x y^{2}
The answer [src]
1    2
- + y 
3     
y2+13y^{2} + \frac{1}{3}
=
=
1    2
- + y 
3     
y2+13y^{2} + \frac{1}{3}
1/3 + y^2

    Use the examples entering the upper and lower limits of integration.