Mister Exam

Other calculators

Integral of x^2-6*x-5 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  5                  
  /                  
 |                   
 |  / 2          \   
 |  \x  - 6*x - 5/ dx
 |                   
/                    
1                    
$$\int\limits_{1}^{5} \left(\left(x^{2} - 6 x\right) - 5\right)\, dx$$
Integral(x^2 - 6*x - 5, (x, 1, 5))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of is when :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                       
 |                                       3
 | / 2          \                   2   x 
 | \x  - 6*x - 5/ dx = C - 5*x - 3*x  + --
 |                                      3 
/                                         
$$\int \left(\left(x^{2} - 6 x\right) - 5\right)\, dx = C + \frac{x^{3}}{3} - 3 x^{2} - 5 x$$
The graph
The answer [src]
-152/3
$$- \frac{152}{3}$$
=
=
-152/3
$$- \frac{152}{3}$$
-152/3
Numerical answer [src]
-50.6666666666667
-50.6666666666667

    Use the examples entering the upper and lower limits of integration.