1 / | | 2 | x - 1 | ------ dx | cos(x) | / 0
Integral((x^2 - 1)/cos(x), (x, 0, 1))
Rewrite the integrand:
Integrate term-by-term:
Don't know the steps in finding this integral.
But the integral is
The integral of a constant times a function is the constant times the integral of the function:
Don't know the steps in finding this integral.
But the integral is
So, the result is:
The result is:
Add the constant of integration:
The answer is:
/ / | | | 2 | 2 | x - 1 log(-1 + sin(x)) log(1 + sin(x)) | x | ------ dx = C + ---------------- - --------------- + | ------ dx | cos(x) 2 2 | cos(x) | | / /
1 / | | (1 + x)*(-1 + x) | ---------------- dx | cos(x) | / 0
=
1 / | | (1 + x)*(-1 + x) | ---------------- dx | cos(x) | / 0
Integral((1 + x)*(-1 + x)/cos(x), (x, 0, 1))
Use the examples entering the upper and lower limits of integration.