Mister Exam

Other calculators

Integral of ((x^2)-1)/cos(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |   2       
 |  x  - 1   
 |  ------ dx
 |  cos(x)   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{x^{2} - 1}{\cos{\left(x \right)}}\, dx$$
Integral((x^2 - 1)/cos(x), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. Don't know the steps in finding this integral.

      But the integral is

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                       /         
 |                                                       |          
 |  2                                                    |    2     
 | x  - 1          log(-1 + sin(x))   log(1 + sin(x))    |   x      
 | ------ dx = C + ---------------- - --------------- +  | ------ dx
 | cos(x)                 2                  2           | cos(x)   
 |                                                       |          
/                                                       /           
$$\int \frac{x^{2} - 1}{\cos{\left(x \right)}}\, dx = C + \frac{\log{\left(\sin{\left(x \right)} - 1 \right)}}{2} - \frac{\log{\left(\sin{\left(x \right)} + 1 \right)}}{2} + \int \frac{x^{2}}{\cos{\left(x \right)}}\, dx$$
The answer [src]
  1                    
  /                    
 |                     
 |  (1 + x)*(-1 + x)   
 |  ---------------- dx
 |       cos(x)        
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \frac{\left(x - 1\right) \left(x + 1\right)}{\cos{\left(x \right)}}\, dx$$
=
=
  1                    
  /                    
 |                     
 |  (1 + x)*(-1 + x)   
 |  ---------------- dx
 |       cos(x)        
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \frac{\left(x - 1\right) \left(x + 1\right)}{\cos{\left(x \right)}}\, dx$$
Integral((1 + x)*(-1 + x)/cos(x), (x, 0, 1))
Numerical answer [src]
-0.748900737919218
-0.748900737919218

    Use the examples entering the upper and lower limits of integration.