Mister Exam

Other calculators

Integral of (x^2-49)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |           2   
 |  / 2     \    
 |  \x  - 49/  dx
 |               
/                
0                
$$\int\limits_{0}^{1} \left(x^{2} - 49\right)^{2}\, dx$$
Integral((x^2 - 49)^2, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                       
 |                                        
 |          2                       3    5
 | / 2     \                    98*x    x 
 | \x  - 49/  dx = C + 2401*x - ----- + --
 |                                3     5 
/                                         
$$\int \left(x^{2} - 49\right)^{2}\, dx = C + \frac{x^{5}}{5} - \frac{98 x^{3}}{3} + 2401 x$$
The graph
The answer [src]
35528
-----
  15 
$$\frac{35528}{15}$$
=
=
35528
-----
  15 
$$\frac{35528}{15}$$
35528/15
Numerical answer [src]
2368.53333333333
2368.53333333333

    Use the examples entering the upper and lower limits of integration.