Mister Exam

Other calculators


(x^2)/(x^2+4x+3)

Integral of (x^2)/(x^2+4x+3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |        2        
 |       x         
 |  ------------ dx
 |   2             
 |  x  + 4*x + 3   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{x^{2}}{\left(x^{2} + 4 x\right) + 3}\, dx$$
Integral(x^2/(x^2 + 4*x + 3), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant is the constant times the variable of integration:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of is .

        Now substitute back in:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of is .

        Now substitute back in:

      So, the result is:

    The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                   
 |                                                    
 |       2                                            
 |      x                    log(1 + x)   9*log(3 + x)
 | ------------ dx = C + x + ---------- - ------------
 |  2                            2             2      
 | x  + 4*x + 3                                       
 |                                                    
/                                                     
$$\int \frac{x^{2}}{\left(x^{2} + 4 x\right) + 3}\, dx = C + x + \frac{\log{\left(x + 1 \right)}}{2} - \frac{9 \log{\left(x + 3 \right)}}{2}$$
The graph
The answer [src]
    log(2)   9*log(4)   9*log(3)
1 + ------ - -------- + --------
      2         2          2    
$$- \frac{9 \log{\left(4 \right)}}{2} + \frac{\log{\left(2 \right)}}{2} + 1 + \frac{9 \log{\left(3 \right)}}{2}$$
=
=
    log(2)   9*log(4)   9*log(3)
1 + ------ - -------- + --------
      2         2          2    
$$- \frac{9 \log{\left(4 \right)}}{2} + \frac{\log{\left(2 \right)}}{2} + 1 + \frac{9 \log{\left(3 \right)}}{2}$$
1 + log(2)/2 - 9*log(4)/2 + 9*log(3)/2
Numerical answer [src]
0.0520042642469585
0.0520042642469585
The graph
Integral of (x^2)/(x^2+4x+3) dx

    Use the examples entering the upper and lower limits of integration.