Mister Exam

Other calculators

Derivative of x^2/(√(1-x^2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
      2    
     x     
-----------
   ________
  /      2 
\/  1 - x  
$$\frac{x^{2}}{\sqrt{1 - x^{2}}}$$
x^2/sqrt(1 - x^2)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
      3                  
     x            2*x    
----------- + -----------
        3/2      ________
/     2\        /      2 
\1 - x /      \/  1 - x  
$$\frac{x^{3}}{\left(1 - x^{2}\right)^{\frac{3}{2}}} + \frac{2 x}{\sqrt{1 - x^{2}}}$$
The second derivative [src]
                /          2 \
              2 |       3*x  |
             x *|-1 + -------|
        2       |           2|
     4*x        \     -1 + x /
2 + ------ - -----------------
         2              2     
    1 - x          1 - x      
------------------------------
            ________          
           /      2           
         \/  1 - x            
$$\frac{- \frac{x^{2} \left(\frac{3 x^{2}}{x^{2} - 1} - 1\right)}{1 - x^{2}} + \frac{4 x^{2}}{1 - x^{2}} + 2}{\sqrt{1 - x^{2}}}$$
The third derivative [src]
    /                 /          2 \\
    |               2 |       5*x  ||
    |              x *|-3 + -------||
    |         2       |           2||
    |      6*x        \     -1 + x /|
3*x*|4 - ------- - -----------------|
    |          2              2     |
    \    -1 + x          1 - x      /
-------------------------------------
                     3/2             
             /     2\                
             \1 - x /                
$$\frac{3 x \left(- \frac{6 x^{2}}{x^{2} - 1} - \frac{x^{2} \left(\frac{5 x^{2}}{x^{2} - 1} - 3\right)}{1 - x^{2}} + 4\right)}{\left(1 - x^{2}\right)^{\frac{3}{2}}}$$