Integral of (x^3+2x^2+x) dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of xn is n+1xn+1 when n=−1:
∫x3dx=4x4
-
The integral of a constant times a function is the constant times the integral of the function:
∫2x2dx=2∫x2dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x2dx=3x3
So, the result is: 32x3
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
The result is: 4x4+32x3+2x2
-
Now simplify:
12x2⋅(3x2+8x+6)
-
Add the constant of integration:
12x2⋅(3x2+8x+6)+constant
The answer is:
12x2⋅(3x2+8x+6)+constant
The answer (Indefinite)
[src]
/
| 2 4 3
| / 3 2 \ x x 2*x
| \x + 2*x + x/ dx = C + -- + -- + ----
| 2 4 3
/
4x4+32x3+2x2
The graph
Use the examples entering the upper and lower limits of integration.