Integral of x^3*cos^3(x) dx
The solution
The answer (Indefinite)
[src]
/
| 3 3 2 3 3 2 3 2
| 3 3 122*cos (x) 40*x*sin (x) 40*sin (x)*cos(x) 2*x *sin (x) 7*x *cos (x) 3 2 2 2 14*x*cos (x)*sin(x)
| x *cos (x) dx = C - ----------- - ------------ - ----------------- + ------------ + ------------ + x *cos (x)*sin(x) + 2*x *sin (x)*cos(x) - -------------------
| 27 9 9 3 3 3
/
$$\int x^{3} \cos^{3}{\left(x \right)}\, dx = C + \frac{2 x^{3} \sin^{3}{\left(x \right)}}{3} + x^{3} \sin{\left(x \right)} \cos^{2}{\left(x \right)} + 2 x^{2} \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \frac{7 x^{2} \cos^{3}{\left(x \right)}}{3} - \frac{40 x \sin^{3}{\left(x \right)}}{9} - \frac{14 x \sin{\left(x \right)} \cos^{2}{\left(x \right)}}{3} - \frac{40 \sin^{2}{\left(x \right)} \cos{\left(x \right)}}{9} - \frac{122 \cos^{3}{\left(x \right)}}{27}$$
Use the examples entering the upper and lower limits of integration.