Integral of x^3*cos(5x) dx
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x3 and let dv(x)=cos(5x).
Then du(x)=3x2.
To find v(x):
-
Let u=5x.
Then let du=5dx and substitute 5du:
∫5cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=5∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 5sin(u)
Now substitute u back in:
5sin(5x)
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=53x2 and let dv(x)=sin(5x).
Then du(x)=56x.
To find v(x):
-
Let u=5x.
Then let du=5dx and substitute 5du:
∫5sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=5∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −5cos(u)
Now substitute u back in:
−5cos(5x)
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=−256x and let dv(x)=cos(5x).
Then du(x)=−256.
To find v(x):
-
Let u=5x.
Then let du=5dx and substitute 5du:
∫5cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=5∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 5sin(u)
Now substitute u back in:
5sin(5x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−1256sin(5x))dx=−1256∫sin(5x)dx
-
Let u=5x.
Then let du=5dx and substitute 5du:
∫5sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=5∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −5cos(u)
Now substitute u back in:
−5cos(5x)
So, the result is: 6256cos(5x)
-
Add the constant of integration:
5x3sin(5x)+253x2cos(5x)−1256xsin(5x)−6256cos(5x)+constant
The answer is:
5x3sin(5x)+253x2cos(5x)−1256xsin(5x)−6256cos(5x)+constant
The answer (Indefinite)
[src]
/
| 3 2
| 3 6*cos(5*x) 6*x*sin(5*x) x *sin(5*x) 3*x *cos(5*x)
| x *cos(5*x) dx = C - ---------- - ------------ + ----------- + -------------
| 625 125 5 25
/
∫x3cos(5x)dx=C+5x3sin(5x)+253x2cos(5x)−1256xsin(5x)−6256cos(5x)
The graph
Use the examples entering the upper and lower limits of integration.