Mister Exam

Other calculators

Integral of x^3*cos(5x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi               
  /               
 |                
 |   3            
 |  x *cos(5*x) dx
 |                
/                 
-pi               
ππx3cos(5x)dx\int\limits_{- \pi}^{\pi} x^{3} \cos{\left(5 x \right)}\, dx
Integral(x^3*cos(5*x), (x, -pi, pi))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=x3u{\left(x \right)} = x^{3} and let dv(x)=cos(5x)\operatorname{dv}{\left(x \right)} = \cos{\left(5 x \right)}.

    Then du(x)=3x2\operatorname{du}{\left(x \right)} = 3 x^{2}.

    To find v(x)v{\left(x \right)}:

    1. Let u=5xu = 5 x.

      Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

      cos(u)5du\int \frac{\cos{\left(u \right)}}{5}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos(u)du=cos(u)du5\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{5}

        1. The integral of cosine is sine:

          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

        So, the result is: sin(u)5\frac{\sin{\left(u \right)}}{5}

      Now substitute uu back in:

      sin(5x)5\frac{\sin{\left(5 x \right)}}{5}

    Now evaluate the sub-integral.

  2. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=3x25u{\left(x \right)} = \frac{3 x^{2}}{5} and let dv(x)=sin(5x)\operatorname{dv}{\left(x \right)} = \sin{\left(5 x \right)}.

    Then du(x)=6x5\operatorname{du}{\left(x \right)} = \frac{6 x}{5}.

    To find v(x)v{\left(x \right)}:

    1. Let u=5xu = 5 x.

      Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

      sin(u)5du\int \frac{\sin{\left(u \right)}}{5}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin(u)du=sin(u)du5\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{5}

        1. The integral of sine is negative cosine:

          sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

        So, the result is: cos(u)5- \frac{\cos{\left(u \right)}}{5}

      Now substitute uu back in:

      cos(5x)5- \frac{\cos{\left(5 x \right)}}{5}

    Now evaluate the sub-integral.

  3. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=6x25u{\left(x \right)} = - \frac{6 x}{25} and let dv(x)=cos(5x)\operatorname{dv}{\left(x \right)} = \cos{\left(5 x \right)}.

    Then du(x)=625\operatorname{du}{\left(x \right)} = - \frac{6}{25}.

    To find v(x)v{\left(x \right)}:

    1. Let u=5xu = 5 x.

      Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

      cos(u)5du\int \frac{\cos{\left(u \right)}}{5}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos(u)du=cos(u)du5\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{5}

        1. The integral of cosine is sine:

          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

        So, the result is: sin(u)5\frac{\sin{\left(u \right)}}{5}

      Now substitute uu back in:

      sin(5x)5\frac{\sin{\left(5 x \right)}}{5}

    Now evaluate the sub-integral.

  4. The integral of a constant times a function is the constant times the integral of the function:

    (6sin(5x)125)dx=6sin(5x)dx125\int \left(- \frac{6 \sin{\left(5 x \right)}}{125}\right)\, dx = - \frac{6 \int \sin{\left(5 x \right)}\, dx}{125}

    1. Let u=5xu = 5 x.

      Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

      sin(u)5du\int \frac{\sin{\left(u \right)}}{5}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin(u)du=sin(u)du5\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{5}

        1. The integral of sine is negative cosine:

          sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

        So, the result is: cos(u)5- \frac{\cos{\left(u \right)}}{5}

      Now substitute uu back in:

      cos(5x)5- \frac{\cos{\left(5 x \right)}}{5}

    So, the result is: 6cos(5x)625\frac{6 \cos{\left(5 x \right)}}{625}

  5. Add the constant of integration:

    x3sin(5x)5+3x2cos(5x)256xsin(5x)1256cos(5x)625+constant\frac{x^{3} \sin{\left(5 x \right)}}{5} + \frac{3 x^{2} \cos{\left(5 x \right)}}{25} - \frac{6 x \sin{\left(5 x \right)}}{125} - \frac{6 \cos{\left(5 x \right)}}{625}+ \mathrm{constant}


The answer is:

x3sin(5x)5+3x2cos(5x)256xsin(5x)1256cos(5x)625+constant\frac{x^{3} \sin{\left(5 x \right)}}{5} + \frac{3 x^{2} \cos{\left(5 x \right)}}{25} - \frac{6 x \sin{\left(5 x \right)}}{125} - \frac{6 \cos{\left(5 x \right)}}{625}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                            
 |                                                   3               2         
 |  3                   6*cos(5*x)   6*x*sin(5*x)   x *sin(5*x)   3*x *cos(5*x)
 | x *cos(5*x) dx = C - ---------- - ------------ + ----------- + -------------
 |                         625           125             5              25     
/                                                                              
x3cos(5x)dx=C+x3sin(5x)5+3x2cos(5x)256xsin(5x)1256cos(5x)625\int x^{3} \cos{\left(5 x \right)}\, dx = C + \frac{x^{3} \sin{\left(5 x \right)}}{5} + \frac{3 x^{2} \cos{\left(5 x \right)}}{25} - \frac{6 x \sin{\left(5 x \right)}}{125} - \frac{6 \cos{\left(5 x \right)}}{625}
The graph
-3.0-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.53.0-5050
The answer [src]
0
00
=
=
0
00
0
Numerical answer [src]
0.0
0.0

    Use the examples entering the upper and lower limits of integration.