Mister Exam

Other calculators


x^3*cos(5x)

Derivative of x^3*cos(5x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3         
x *cos(5*x)
x3cos(5x)x^{3} \cos{\left(5 x \right)}
d / 3         \
--\x *cos(5*x)/
dx             
ddxx3cos(5x)\frac{d}{d x} x^{3} \cos{\left(5 x \right)}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=x3f{\left(x \right)} = x^{3}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

    g(x)=cos(5x)g{\left(x \right)} = \cos{\left(5 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=5xu = 5 x.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 55

      The result of the chain rule is:

      5sin(5x)- 5 \sin{\left(5 x \right)}

    The result is: 5x3sin(5x)+3x2cos(5x)- 5 x^{3} \sin{\left(5 x \right)} + 3 x^{2} \cos{\left(5 x \right)}

  2. Now simplify:

    x2(5xsin(5x)+3cos(5x))x^{2} \left(- 5 x \sin{\left(5 x \right)} + 3 \cos{\left(5 x \right)}\right)


The answer is:

x2(5xsin(5x)+3cos(5x))x^{2} \left(- 5 x \sin{\left(5 x \right)} + 3 \cos{\left(5 x \right)}\right)

The graph
02468-8-6-4-2-1010-1000010000
The first derivative [src]
     3               2         
- 5*x *sin(5*x) + 3*x *cos(5*x)
5x3sin(5x)+3x2cos(5x)- 5 x^{3} \sin{\left(5 x \right)} + 3 x^{2} \cos{\left(5 x \right)}
The second derivative [src]
  /                                 2         \
x*\6*cos(5*x) - 30*x*sin(5*x) - 25*x *cos(5*x)/
x(25x2cos(5x)30xsin(5x)+6cos(5x))x \left(- 25 x^{2} \cos{\left(5 x \right)} - 30 x \sin{\left(5 x \right)} + 6 \cos{\left(5 x \right)}\right)
The third derivative [src]
                  2                                 3         
6*cos(5*x) - 225*x *cos(5*x) - 90*x*sin(5*x) + 125*x *sin(5*x)
125x3sin(5x)225x2cos(5x)90xsin(5x)+6cos(5x)125 x^{3} \sin{\left(5 x \right)} - 225 x^{2} \cos{\left(5 x \right)} - 90 x \sin{\left(5 x \right)} + 6 \cos{\left(5 x \right)}
The graph
Derivative of x^3*cos(5x)