Mister Exam

Other calculators


x^3-2x^2

Integral of x^3-2x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |  / 3      2\   
 |  \x  - 2*x / dx
 |                
/                 
0                 
01(x32x2)dx\int\limits_{0}^{1} \left(x^{3} - 2 x^{2}\right)\, dx
Integral(x^3 - 2*x^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (2x2)dx=2x2dx\int \left(- 2 x^{2}\right)\, dx = - 2 \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: 2x33- \frac{2 x^{3}}{3}

    The result is: x442x33\frac{x^{4}}{4} - \frac{2 x^{3}}{3}

  2. Now simplify:

    x3(3x8)12\frac{x^{3} \left(3 x - 8\right)}{12}

  3. Add the constant of integration:

    x3(3x8)12+constant\frac{x^{3} \left(3 x - 8\right)}{12}+ \mathrm{constant}


The answer is:

x3(3x8)12+constant\frac{x^{3} \left(3 x - 8\right)}{12}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                              
 |                         3    4
 | / 3      2\          2*x    x 
 | \x  - 2*x / dx = C - ---- + --
 |                       3     4 
/                                
(x32x2)dx=C+x442x33\int \left(x^{3} - 2 x^{2}\right)\, dx = C + \frac{x^{4}}{4} - \frac{2 x^{3}}{3}
The graph
0.001.000.100.200.300.400.500.600.700.800.901-2
The answer [src]
-5/12
512- \frac{5}{12}
=
=
-5/12
512- \frac{5}{12}
-5/12
Numerical answer [src]
-0.416666666666667
-0.416666666666667
The graph
Integral of x^3-2x^2 dx

    Use the examples entering the upper and lower limits of integration.