1 / | | 3 | x - 1 | -------- dx | 3 | 4*x - x | / 0
Integral((x^3 - 1)/(4*x^3 - x), (x, 0, 1))
There are multiple ways to do this integral.
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is .
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is .
So, the result is:
Now substitute back in:
So, the result is:
The integral of is .
The result is:
Rewrite the integrand:
Integrate term-by-term:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is .
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is .
So, the result is:
Now substitute back in:
So, the result is:
The result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is .
So, the result is:
Now substitute back in:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is .
So, the result is:
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is .
So, the result is:
The result is:
So, the result is:
The result is:
Add the constant of integration:
The answer is:
/ | | 3 | x - 1 9*log(1 + 2*x) 7*log(-1 + 2*x) x | -------- dx = C - -------------- - --------------- + - + log(x) | 3 16 16 4 | 4*x - x | /
Use the examples entering the upper and lower limits of integration.