Integral of x^3-5x dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of xn is n+1xn+1 when n=−1:
∫x3dx=4x4
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−5x)dx=−5∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
So, the result is: −25x2
The result is: 4x4−25x2
-
Now simplify:
4x2(x2−10)
-
Add the constant of integration:
4x2(x2−10)+constant
The answer is:
4x2(x2−10)+constant
The answer (Indefinite)
[src]
/
| 2 4
| / 3 \ 5*x x
| \x - 5*x/ dx = C - ---- + --
| 2 4
/
∫(x3−5x)dx=C+4x4−25x2
The graph
Use the examples entering the upper and lower limits of integration.