Mister Exam

Other calculators


x^3-12x

Integral of x^3-12x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |  / 3       \   
 |  \x  - 12*x/ dx
 |                
/                 
0                 
01(x312x)dx\int\limits_{0}^{1} \left(x^{3} - 12 x\right)\, dx
Integral(x^3 - 12*x, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (12x)dx=12xdx\int \left(- 12 x\right)\, dx = - 12 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: 6x2- 6 x^{2}

    The result is: x446x2\frac{x^{4}}{4} - 6 x^{2}

  2. Now simplify:

    x2(x224)4\frac{x^{2} \left(x^{2} - 24\right)}{4}

  3. Add the constant of integration:

    x2(x224)4+constant\frac{x^{2} \left(x^{2} - 24\right)}{4}+ \mathrm{constant}


The answer is:

x2(x224)4+constant\frac{x^{2} \left(x^{2} - 24\right)}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                              
 |                              4
 | / 3       \             2   x 
 | \x  - 12*x/ dx = C - 6*x  + --
 |                             4 
/                                
(x312x)dx=C+x446x2\int \left(x^{3} - 12 x\right)\, dx = C + \frac{x^{4}}{4} - 6 x^{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-2010
The answer [src]
-23/4
234- \frac{23}{4}
=
=
-23/4
234- \frac{23}{4}
-23/4
Numerical answer [src]
-5.75
-5.75
The graph
Integral of x^3-12x dx

    Use the examples entering the upper and lower limits of integration.