Mister Exam

Other calculators


(x^3)/(x+3)

Integral of (x^3)/(x+3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1         
  /         
 |          
 |     3    
 |    x     
 |  ----- dx
 |  x + 3   
 |          
/           
0           
01x3x+3dx\int\limits_{0}^{1} \frac{x^{3}}{x + 3}\, dx
Integral(x^3/(x + 3), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    x3x+3=x23x+927x+3\frac{x^{3}}{x + 3} = x^{2} - 3 x + 9 - \frac{27}{x + 3}

  2. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (3x)dx=3xdx\int \left(- 3 x\right)\, dx = - 3 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: 3x22- \frac{3 x^{2}}{2}

    1. The integral of a constant is the constant times the variable of integration:

      9dx=9x\int 9\, dx = 9 x

    1. The integral of a constant times a function is the constant times the integral of the function:

      (27x+3)dx=271x+3dx\int \left(- \frac{27}{x + 3}\right)\, dx = - 27 \int \frac{1}{x + 3}\, dx

      1. Let u=x+3u = x + 3.

        Then let du=dxdu = dx and substitute dudu:

        1udu\int \frac{1}{u}\, du

        1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

        Now substitute uu back in:

        log(x+3)\log{\left(x + 3 \right)}

      So, the result is: 27log(x+3)- 27 \log{\left(x + 3 \right)}

    The result is: x333x22+9x27log(x+3)\frac{x^{3}}{3} - \frac{3 x^{2}}{2} + 9 x - 27 \log{\left(x + 3 \right)}

  3. Add the constant of integration:

    x333x22+9x27log(x+3)+constant\frac{x^{3}}{3} - \frac{3 x^{2}}{2} + 9 x - 27 \log{\left(x + 3 \right)}+ \mathrm{constant}


The answer is:

x333x22+9x27log(x+3)+constant\frac{x^{3}}{3} - \frac{3 x^{2}}{2} + 9 x - 27 \log{\left(x + 3 \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                              
 |                                               
 |    3                                    2    3
 |   x                                  3*x    x 
 | ----- dx = C - 27*log(3 + x) + 9*x - ---- + --
 | x + 3                                 2     3 
 |                                               
/                                                
2x39x2+54x627log(x+3){{2\,x^3-9\,x^2+54\,x}\over{6}}-27\,\log \left(x+3\right)
The graph
0.001.000.100.200.300.400.500.600.700.800.90-5050
The answer [src]
47/6 - 27*log(4) + 27*log(3)
27log3162log447627\,\log 3-{{162\,\log 4-47}\over{6}}
=
=
47/6 - 27*log(4) + 27*log(3)
27log(4)+476+27log(3)- 27 \log{\left(4 \right)} + \frac{47}{6} + 27 \log{\left(3 \right)}
Numerical answer [src]
0.0659173771352483
0.0659173771352483
The graph
Integral of (x^3)/(x+3) dx

    Use the examples entering the upper and lower limits of integration.