Integral of (x^3)/(x+3) dx
The solution
Detail solution
-
Rewrite the integrand:
x+3x3=x2−3x+9−x+327
-
Integrate term-by-term:
-
The integral of xn is n+1xn+1 when n=−1:
∫x2dx=3x3
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3x)dx=−3∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
So, the result is: −23x2
-
The integral of a constant is the constant times the variable of integration:
∫9dx=9x
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−x+327)dx=−27∫x+31dx
-
Let u=x+3.
Then let du=dx and substitute du:
∫u1du
-
The integral of u1 is log(u).
Now substitute u back in:
log(x+3)
So, the result is: −27log(x+3)
The result is: 3x3−23x2+9x−27log(x+3)
-
Add the constant of integration:
3x3−23x2+9x−27log(x+3)+constant
The answer is:
3x3−23x2+9x−27log(x+3)+constant
The answer (Indefinite)
[src]
/
|
| 3 2 3
| x 3*x x
| ----- dx = C - 27*log(3 + x) + 9*x - ---- + --
| x + 3 2 3
|
/
62x3−9x2+54x−27log(x+3)
The graph
47/6 - 27*log(4) + 27*log(3)
27log3−6162log4−47
=
47/6 - 27*log(4) + 27*log(3)
−27log(4)+647+27log(3)
Use the examples entering the upper and lower limits of integration.