Mister Exam

Other calculators


(x^3)/(4-x^2)

Integral of (x^3)/(4-x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |     3     
 |    x      
 |  ------ dx
 |       2   
 |  4 - x    
 |           
/            
0            
01x34x2dx\int\limits_{0}^{1} \frac{x^{3}}{4 - x^{2}}\, dx
Integral(x^3/(4 - x^2), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=x2u = x^{2}.

      Then let du=2xdxdu = 2 x dx and substitute du- du:

      (u2u8)du\int \left(- \frac{u}{2 u - 8}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        u2u8du=u2u8du\int \frac{u}{2 u - 8}\, du = - \int \frac{u}{2 u - 8}\, du

        1. Rewrite the integrand:

          u2u8=12+2u4\frac{u}{2 u - 8} = \frac{1}{2} + \frac{2}{u - 4}

        2. Integrate term-by-term:

          1. The integral of a constant is the constant times the variable of integration:

            12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

          1. The integral of a constant times a function is the constant times the integral of the function:

            2u4du=21u4du\int \frac{2}{u - 4}\, du = 2 \int \frac{1}{u - 4}\, du

            1. Let u=u4u = u - 4.

              Then let du=dudu = du and substitute dudu:

              1udu\int \frac{1}{u}\, du

              1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

              Now substitute uu back in:

              log(u4)\log{\left(u - 4 \right)}

            So, the result is: 2log(u4)2 \log{\left(u - 4 \right)}

          The result is: u2+2log(u4)\frac{u}{2} + 2 \log{\left(u - 4 \right)}

        So, the result is: u22log(u4)- \frac{u}{2} - 2 \log{\left(u - 4 \right)}

      Now substitute uu back in:

      x222log(x24)- \frac{x^{2}}{2} - 2 \log{\left(x^{2} - 4 \right)}

    Method #2

    1. Rewrite the integrand:

      x34x2=x2x+22x2\frac{x^{3}}{4 - x^{2}} = - x - \frac{2}{x + 2} - \frac{2}{x - 2}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (x)dx=xdx\int \left(- x\right)\, dx = - \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: x22- \frac{x^{2}}{2}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (2x+2)dx=21x+2dx\int \left(- \frac{2}{x + 2}\right)\, dx = - 2 \int \frac{1}{x + 2}\, dx

        1. Let u=x+2u = x + 2.

          Then let du=dxdu = dx and substitute dudu:

          1udu\int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(x+2)\log{\left(x + 2 \right)}

        So, the result is: 2log(x+2)- 2 \log{\left(x + 2 \right)}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (2x2)dx=21x2dx\int \left(- \frac{2}{x - 2}\right)\, dx = - 2 \int \frac{1}{x - 2}\, dx

        1. Let u=x2u = x - 2.

          Then let du=dxdu = dx and substitute dudu:

          1udu\int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(x2)\log{\left(x - 2 \right)}

        So, the result is: 2log(x2)- 2 \log{\left(x - 2 \right)}

      The result is: x222log(x2)2log(x+2)- \frac{x^{2}}{2} - 2 \log{\left(x - 2 \right)} - 2 \log{\left(x + 2 \right)}

    Method #3

    1. Rewrite the integrand:

      x34x2=x3x24\frac{x^{3}}{4 - x^{2}} = - \frac{x^{3}}{x^{2} - 4}

    2. The integral of a constant times a function is the constant times the integral of the function:

      (x3x24)dx=x3x24dx\int \left(- \frac{x^{3}}{x^{2} - 4}\right)\, dx = - \int \frac{x^{3}}{x^{2} - 4}\, dx

      1. Let u=x2u = x^{2}.

        Then let du=2xdxdu = 2 x dx and substitute dudu:

        u2u8du\int \frac{u}{2 u - 8}\, du

        1. Rewrite the integrand:

          u2u8=12+2u4\frac{u}{2 u - 8} = \frac{1}{2} + \frac{2}{u - 4}

        2. Integrate term-by-term:

          1. The integral of a constant is the constant times the variable of integration:

            12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

          1. The integral of a constant times a function is the constant times the integral of the function:

            2u4du=21u4du\int \frac{2}{u - 4}\, du = 2 \int \frac{1}{u - 4}\, du

            1. Let u=u4u = u - 4.

              Then let du=dudu = du and substitute dudu:

              1udu\int \frac{1}{u}\, du

              1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

              Now substitute uu back in:

              log(u4)\log{\left(u - 4 \right)}

            So, the result is: 2log(u4)2 \log{\left(u - 4 \right)}

          The result is: u2+2log(u4)\frac{u}{2} + 2 \log{\left(u - 4 \right)}

        Now substitute uu back in:

        x22+2log(x24)\frac{x^{2}}{2} + 2 \log{\left(x^{2} - 4 \right)}

      So, the result is: x222log(x24)- \frac{x^{2}}{2} - 2 \log{\left(x^{2} - 4 \right)}

  2. Add the constant of integration:

    x222log(x24)+constant- \frac{x^{2}}{2} - 2 \log{\left(x^{2} - 4 \right)}+ \mathrm{constant}


The answer is:

x222log(x24)+constant- \frac{x^{2}}{2} - 2 \log{\left(x^{2} - 4 \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                   
 |                                    
 |    3                              2
 |   x                  /      2\   x 
 | ------ dx = C - 2*log\-4 + x / - --
 |      2                           2 
 | 4 - x                              
 |                                    
/                                     
x34x2dx=Cx222log(x24)\int \frac{x^{3}}{4 - x^{2}}\, dx = C - \frac{x^{2}}{2} - 2 \log{\left(x^{2} - 4 \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.00.5
The answer [src]
-1/2 - 2*log(3) + 2*log(4)
2log(3)12+2log(4)- 2 \log{\left(3 \right)} - \frac{1}{2} + 2 \log{\left(4 \right)}
=
=
-1/2 - 2*log(3) + 2*log(4)
2log(3)12+2log(4)- 2 \log{\left(3 \right)} - \frac{1}{2} + 2 \log{\left(4 \right)}
-1/2 - 2*log(3) + 2*log(4)
Numerical answer [src]
0.0753641449035619
0.0753641449035619
The graph
Integral of (x^3)/(4-x^2) dx

    Use the examples entering the upper and lower limits of integration.