Mister Exam

Other calculators

Integral of x^7*cos(y) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 x - 4*cos(y)            
       /                 
      |                  
      |       7          
      |      x *cos(y) dx
      |                  
     /                   
     0                   
$$\int\limits_{0}^{x - 4 \cos{\left(y \right)}} x^{7} \cos{\left(y \right)}\, dx$$
Integral(x^7*cos(y), (x, 0, x - 4*cos(y)))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. The integral of is when :

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                            
 |                     8       
 |  7                 x *cos(y)
 | x *cos(y) dx = C + ---------
 |                        8    
/                              
$$\int x^{7} \cos{\left(y \right)}\, dx = C + \frac{x^{8} \cos{\left(y \right)}}{8}$$
The answer [src]
              8       
(x - 4*cos(y)) *cos(y)
----------------------
          8           
$$\frac{\left(x - 4 \cos{\left(y \right)}\right)^{8} \cos{\left(y \right)}}{8}$$
=
=
              8       
(x - 4*cos(y)) *cos(y)
----------------------
          8           
$$\frac{\left(x - 4 \cos{\left(y \right)}\right)^{8} \cos{\left(y \right)}}{8}$$
(x - 4*cos(y))^8*cos(y)/8

    Use the examples entering the upper and lower limits of integration.