Mister Exam

Other calculators

Integral of (x^(1÷2))tan^2(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |    ___    2      
 |  \/ x *tan (x) dx
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \sqrt{x} \tan^{2}{\left(x \right)}\, dx$$
Integral(sqrt(x)*tan(x)^2, (x, 0, 1))
The answer (Indefinite) [src]
$$-{{\left(-3\,\sin ^2\left(4\,x\right)-12\,\sin \left(2\,x\right)\, \sin \left(4\,x\right)-3\,\cos ^2\left(4\,x\right)+\left(-12\,\cos \left(2\,x\right)-6\right)\,\cos \left(4\,x\right)-12\,\sin ^2\left( 2\,x\right)-12\,\cos ^2\left(2\,x\right)-12\,\cos \left(2\,x\right)- 3\right)\,\int {{{\sqrt{x}\,\left(\left(6\,\sin \left(4\,x\right)+8 \,x\,\cos \left(4\,x\right)+3\,\sin \left(2\,x\right)\right)\,\sin \left(6\,x\right)+\left(-8\,x\,\sin \left(4\,x\right)+6\,\cos \left( 4\,x\right)+3\,\cos \left(2\,x\right)-3\right)\,\cos \left(6\,x \right)+18\,\sin ^2\left(4\,x\right)+\left(27\,\sin \left(2\,x \right)-24\,x\,\cos \left(2\,x\right)-8\,x\right)\,\sin \left(4\,x \right)+18\,\cos ^2\left(4\,x\right)+\left(24\,x\,\sin \left(2\,x \right)+27\,\cos \left(2\,x\right)-3\right)\,\cos \left(4\,x\right)+ 9\,\sin ^2\left(2\,x\right)+9\,\cos ^2\left(2\,x\right)-6\,\cos \left(2\,x\right)-3\right)}\over{3\,\sin ^2\left(6\,x\right)+\left( 18\,\sin \left(4\,x\right)+18\,\sin \left(2\,x\right)\right)\,\sin \left(6\,x\right)+3\,\cos ^2\left(6\,x\right)+\left(18\,\cos \left(4 \,x\right)+18\,\cos \left(2\,x\right)+6\right)\,\cos \left(6\,x \right)+27\,\sin ^2\left(4\,x\right)+54\,\sin \left(2\,x\right)\, \sin \left(4\,x\right)+27\,\cos ^2\left(4\,x\right)+\left(54\,\cos \left(2\,x\right)+18\right)\,\cos \left(4\,x\right)+27\,\sin ^2 \left(2\,x\right)+27\,\cos ^2\left(2\,x\right)+18\,\cos \left(2\,x \right)+3}}}{\;dx}+\sqrt{x}\,\left(2\,x\,\sin ^2\left(4\,x\right)+4 \,x\,\sin \left(2\,x\right)\,\sin \left(4\,x\right)+2\,x\,\cos ^2 \left(4\,x\right)+\left(4\,x\,\cos \left(2\,x\right)+2\,x\right)\, \cos \left(4\,x\right)\right)}\over{3\,\sin ^2\left(4\,x\right)+12\, \sin \left(2\,x\right)\,\sin \left(4\,x\right)+3\,\cos ^2\left(4\,x \right)+\left(12\,\cos \left(2\,x\right)+6\right)\,\cos \left(4\,x \right)+12\,\sin ^2\left(2\,x\right)+12\,\cos ^2\left(2\,x\right)+12 \,\cos \left(2\,x\right)+3}}$$
The answer [src]
  1                 
  /                 
 |                  
 |    ___    2      
 |  \/ x *tan (x) dx
 |                  
/                   
0                   
$$\int_{0}^{1}{\sqrt{x}\,\tan ^2x\;dx}$$
=
=
  1                 
  /                 
 |                  
 |    ___    2      
 |  \/ x *tan (x) dx
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \sqrt{x} \tan^{2}{\left(x \right)}\, dx$$
Numerical answer [src]
0.49232661339107
0.49232661339107

    Use the examples entering the upper and lower limits of integration.