Mister Exam

Other calculators

Integral of x^(1/x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1         
  /         
 |          
 |  x ___   
 |  \/ x  dx
 |          
/           
0           
$$\int\limits_{0}^{1} x^{\frac{1}{x}}\, dx$$
Integral(x^(1/x), (x, 0, 1))
The answer (Indefinite) [src]
  /                 /        
 |                 |         
 | x ___           | x ___   
 | \/ x  dx = C +  | \/ x  dx
 |                 |         
/                 /          
$$\int x^{\frac{1}{x}}\, dx = C + \int x^{\frac{1}{x}}\, dx$$
The answer [src]
  1         
  /         
 |          
 |  x ___   
 |  \/ x  dx
 |          
/           
0           
$$\int\limits_{0}^{1} x^{\frac{1}{x}}\, dx$$
=
=
  1         
  /         
 |          
 |  x ___   
 |  \/ x  dx
 |          
/           
0           
$$\int\limits_{0}^{1} x^{\frac{1}{x}}\, dx$$
Integral(x^(1/x), (x, 0, 1))
Numerical answer [src]
0.353496800701422
0.353496800701422

    Use the examples entering the upper and lower limits of integration.