Mister Exam

Other calculators

Integral of x^4+4x^3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0               
  /               
 |                
 |  / 4      3\   
 |  \x  + 4*x / dx
 |                
/                 
0                 
00(x4+4x3)dx\int\limits_{0}^{0} \left(x^{4} + 4 x^{3}\right)\, dx
Integral(x^4 + 4*x^3, (x, 0, 0))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x4dx=x55\int x^{4}\, dx = \frac{x^{5}}{5}

    1. The integral of a constant times a function is the constant times the integral of the function:

      4x3dx=4x3dx\int 4 x^{3}\, dx = 4 \int x^{3}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

      So, the result is: x4x^{4}

    The result is: x55+x4\frac{x^{5}}{5} + x^{4}

  2. Now simplify:

    x4(x+5)5\frac{x^{4} \left(x + 5\right)}{5}

  3. Add the constant of integration:

    x4(x+5)5+constant\frac{x^{4} \left(x + 5\right)}{5}+ \mathrm{constant}


The answer is:

x4(x+5)5+constant\frac{x^{4} \left(x + 5\right)}{5}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                            
 |                            5
 | / 4      3\           4   x 
 | \x  + 4*x / dx = C + x  + --
 |                           5 
/                              
(x4+4x3)dx=C+x55+x4\int \left(x^{4} + 4 x^{3}\right)\, dx = C + \frac{x^{5}}{5} + x^{4}
The graph
0.001.000.100.200.300.400.500.600.700.800.9001
The answer [src]
0
00
=
=
0
00
0
Numerical answer [src]
0.0
0.0

    Use the examples entering the upper and lower limits of integration.