Integral of x^4/(x^2+1) dx
The solution
Detail solution
-
Rewrite the integrand:
x2+1x4=x2−1+x2+11
-
Integrate term-by-term:
-
The integral of xn is n+1xn+1 when n=−1:
∫x2dx=3x3
-
The integral of a constant is the constant times the variable of integration:
∫(−1)dx=−x
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), True), (ArccothRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), False), (ArctanhRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), False)], context=1/(x**2 + 1), symbol=x)
The result is: 3x3−x+atan(x)
-
Add the constant of integration:
3x3−x+atan(x)+constant
The answer is:
3x3−x+atan(x)+constant
The answer (Indefinite)
[src]
/
|
| 4 3
| x x
| ------ dx = C - x + -- + atan(x)
| 2 3
| x + 1
|
/
∫x2+1x4dx=C+3x3−x+atan(x)
The graph
−32+4π
=
−32+4π
Use the examples entering the upper and lower limits of integration.