Mister Exam

Integral of x^adx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1      
  /      
 |       
 |   a   
 |  x  dx
 |       
/        
0        
$$\int\limits_{0}^{1} x^{a}\, dx$$
Integral(x^a, (x, 0, 1))
Detail solution
  1. The integral of is when :

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /            // 1 + a             \
 |             ||x                  |
 |  a          ||------  for a != -1|
 | x  dx = C + |<1 + a              |
 |             ||                   |
/              ||log(x)   otherwise |
               \\                   /
$$\int x^{a}\, dx = C + \begin{cases} \frac{x^{a + 1}}{a + 1} & \text{for}\: a \neq -1 \\\log{\left(x \right)} & \text{otherwise} \end{cases}$$
The answer [src]
/         1 + a                                   
|  1     0                                        
|----- - ------  for And(a > -oo, a < oo, a != -1)
<1 + a   1 + a                                    
|                                                 
|      oo                    otherwise            
\                                                 
$$\begin{cases} - \frac{0^{a + 1}}{a + 1} + \frac{1}{a + 1} & \text{for}\: a > -\infty \wedge a < \infty \wedge a \neq -1 \\\infty & \text{otherwise} \end{cases}$$
=
=
/         1 + a                                   
|  1     0                                        
|----- - ------  for And(a > -oo, a < oo, a != -1)
<1 + a   1 + a                                    
|                                                 
|      oo                    otherwise            
\                                                 
$$\begin{cases} - \frac{0^{a + 1}}{a + 1} + \frac{1}{a + 1} & \text{for}\: a > -\infty \wedge a < \infty \wedge a \neq -1 \\\infty & \text{otherwise} \end{cases}$$
Piecewise((1/(1 + a) - 0^(1 + a)/(1 + a), (a > -oo)∧(a < oo)∧(Ne(a, -1))), (oo, True))

    Use the examples entering the upper and lower limits of integration.