1 / | | a | x dx | / 0
Integral(x^a, (x, 0, 1))
The integral of is when :
Add the constant of integration:
The answer is:
/ // 1 + a \
| ||x |
| a ||------ for a != -1|
| x dx = C + |<1 + a |
| || |
/ ||log(x) otherwise |
\\ /
/ 1 + a | 1 0 |----- - ------ for And(a > -oo, a < oo, a != -1) <1 + a 1 + a | | oo otherwise \
=
/ 1 + a | 1 0 |----- - ------ for And(a > -oo, a < oo, a != -1) <1 + a 1 + a | | oo otherwise \
Piecewise((1/(1 + a) - 0^(1 + a)/(1 + a), (a > -oo)∧(a < oo)∧(Ne(a, -1))), (oo, True))
Use the examples entering the upper and lower limits of integration.