pi -- 4 / | | 6 | x *sin(x) dx | / -2020
Integral(x^6*sin(x), (x, -2020, pi/4))
Use integration by parts:
Let and let .
Then .
To find :
The integral of sine is negative cosine:
Now evaluate the sub-integral.
Use integration by parts:
Let and let .
Then .
To find :
The integral of cosine is sine:
Now evaluate the sub-integral.
Use integration by parts:
Let and let .
Then .
To find :
The integral of sine is negative cosine:
Now evaluate the sub-integral.
Use integration by parts:
Let and let .
Then .
To find :
The integral of cosine is sine:
Now evaluate the sub-integral.
Use integration by parts:
Let and let .
Then .
To find :
The integral of sine is negative cosine:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Use integration by parts:
Let and let .
Then .
To find :
The integral of cosine is sine:
Now evaluate the sub-integral.
The integral of sine is negative cosine:
So, the result is:
Add the constant of integration:
The answer is:
/ | | 6 6 2 3 5 4 | x *sin(x) dx = C + 720*cos(x) - x *cos(x) - 360*x *cos(x) - 120*x *sin(x) + 6*x *sin(x) + 30*x *cos(x) + 720*x*sin(x) | /
___ 2 ___ 3 ___ 6 ___ 5 ___ 4 ___ ___ 45*\/ 2 *pi 15*\/ 2 *pi \/ 2 *pi 3*\/ 2 *pi 15*\/ 2 *pi -201792940531694400*sin(2020) + 360*\/ 2 + 67936790150008143280*cos(2020) + 90*pi*\/ 2 - ------------ - ------------ - --------- + ----------- + ------------ 4 16 8192 1024 256
=
___ 2 ___ 3 ___ 6 ___ 5 ___ 4 ___ ___ 45*\/ 2 *pi 15*\/ 2 *pi \/ 2 *pi 3*\/ 2 *pi 15*\/ 2 *pi -201792940531694400*sin(2020) + 360*\/ 2 + 67936790150008143280*cos(2020) + 90*pi*\/ 2 - ------------ - ------------ - --------- + ----------- + ------------ 4 16 8192 1024 256
-201792940531694400*sin(2020) + 360*sqrt(2) + 67936790150008143280*cos(2020) + 90*pi*sqrt(2) - 45*sqrt(2)*pi^2/4 - 15*sqrt(2)*pi^3/16 - sqrt(2)*pi^6/8192 + 3*sqrt(2)*pi^5/1024 + 15*sqrt(2)*pi^4/256
Use the examples entering the upper and lower limits of integration.