Mister Exam

Integral of x^6sinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  pi              
  --              
  4               
   /              
  |               
  |    6          
  |   x *sin(x) dx
  |               
 /                
-2020             
$$\int\limits_{-2020}^{\frac{\pi}{4}} x^{6} \sin{\left(x \right)}\, dx$$
Integral(x^6*sin(x), (x, -2020, pi/4))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of sine is negative cosine:

    Now evaluate the sub-integral.

  2. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of cosine is sine:

    Now evaluate the sub-integral.

  3. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of sine is negative cosine:

    Now evaluate the sub-integral.

  4. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of cosine is sine:

    Now evaluate the sub-integral.

  5. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of sine is negative cosine:

    Now evaluate the sub-integral.

  6. The integral of a constant times a function is the constant times the integral of the function:

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. The integral of cosine is sine:

      Now evaluate the sub-integral.

    2. The integral of sine is negative cosine:

    So, the result is:

  7. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                                                                     
 |                                                                                                                      
 |  6                               6               2               3             5              4                      
 | x *sin(x) dx = C + 720*cos(x) - x *cos(x) - 360*x *cos(x) - 120*x *sin(x) + 6*x *sin(x) + 30*x *cos(x) + 720*x*sin(x)
 |                                                                                                                      
/                                                                                                                       
$$\int x^{6} \sin{\left(x \right)}\, dx = C - x^{6} \cos{\left(x \right)} + 6 x^{5} \sin{\left(x \right)} + 30 x^{4} \cos{\left(x \right)} - 120 x^{3} \sin{\left(x \right)} - 360 x^{2} \cos{\left(x \right)} + 720 x \sin{\left(x \right)} + 720 \cos{\left(x \right)}$$
The graph
The answer [src]
                                                                                                ___   2        ___   3     ___   6       ___   5        ___   4
                                      ___                                            ___   45*\/ 2 *pi    15*\/ 2 *pi    \/ 2 *pi    3*\/ 2 *pi    15*\/ 2 *pi 
-201792940531694400*sin(2020) + 360*\/ 2  + 67936790150008143280*cos(2020) + 90*pi*\/ 2  - ------------ - ------------ - --------- + ----------- + ------------
                                                                                                4              16           8192         1024          256     
$$67936790150008143280 \cos{\left(2020 \right)} - 201792940531694400 \sin{\left(2020 \right)} - \frac{45 \sqrt{2} \pi^{2}}{4} - \frac{15 \sqrt{2} \pi^{3}}{16} - \frac{\sqrt{2} \pi^{6}}{8192} + \frac{3 \sqrt{2} \pi^{5}}{1024} + \frac{15 \sqrt{2} \pi^{4}}{256} + 90 \sqrt{2} \pi + 360 \sqrt{2}$$
=
=
                                                                                                ___   2        ___   3     ___   6       ___   5        ___   4
                                      ___                                            ___   45*\/ 2 *pi    15*\/ 2 *pi    \/ 2 *pi    3*\/ 2 *pi    15*\/ 2 *pi 
-201792940531694400*sin(2020) + 360*\/ 2  + 67936790150008143280*cos(2020) + 90*pi*\/ 2  - ------------ - ------------ - --------- + ----------- + ------------
                                                                                                4              16           8192         1024          256     
$$67936790150008143280 \cos{\left(2020 \right)} - 201792940531694400 \sin{\left(2020 \right)} - \frac{45 \sqrt{2} \pi^{2}}{4} - \frac{15 \sqrt{2} \pi^{3}}{16} - \frac{\sqrt{2} \pi^{6}}{8192} + \frac{3 \sqrt{2} \pi^{5}}{1024} + \frac{15 \sqrt{2} \pi^{4}}{256} + 90 \sqrt{2} \pi + 360 \sqrt{2}$$
-201792940531694400*sin(2020) + 360*sqrt(2) + 67936790150008143280*cos(2020) + 90*pi*sqrt(2) - 45*sqrt(2)*pi^2/4 - 15*sqrt(2)*pi^3/16 - sqrt(2)*pi^6/8192 + 3*sqrt(2)*pi^5/1024 + 15*sqrt(2)*pi^4/256
Numerical answer [src]
-1.1286603395847e+21
-1.1286603395847e+21

    Use the examples entering the upper and lower limits of integration.