Detail solution
-
Apply the product rule:
; to find :
-
Apply the power rule: goes to
; to find :
-
The derivative of sine is cosine:
The result is:
-
Now simplify:
The answer is:
The first derivative
[src]
6 5
x *cos(x) + 6*x *sin(x)
$$x^{6} \cos{\left(x \right)} + 6 x^{5} \sin{\left(x \right)}$$
The second derivative
[src]
4 / 2 \
x *\30*sin(x) - x *sin(x) + 12*x*cos(x)/
$$x^{4} \left(- x^{2} \sin{\left(x \right)} + 12 x \cos{\left(x \right)} + 30 \sin{\left(x \right)}\right)$$
The third derivative
[src]
3 / 3 2 \
x *\120*sin(x) - x *cos(x) - 18*x *sin(x) + 90*x*cos(x)/
$$x^{3} \left(- x^{3} \cos{\left(x \right)} - 18 x^{2} \sin{\left(x \right)} + 90 x \cos{\left(x \right)} + 120 \sin{\left(x \right)}\right)$$