Mister Exam

Derivative of x^6sinx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 6       
x *sin(x)
$$x^{6} \sin{\left(x \right)}$$
x^6*sin(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. The derivative of sine is cosine:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 6             5       
x *cos(x) + 6*x *sin(x)
$$x^{6} \cos{\left(x \right)} + 6 x^{5} \sin{\left(x \right)}$$
The second derivative [src]
 4 /             2                     \
x *\30*sin(x) - x *sin(x) + 12*x*cos(x)/
$$x^{4} \left(- x^{2} \sin{\left(x \right)} + 12 x \cos{\left(x \right)} + 30 \sin{\left(x \right)}\right)$$
The third derivative [src]
 3 /              3              2                     \
x *\120*sin(x) - x *cos(x) - 18*x *sin(x) + 90*x*cos(x)/
$$x^{3} \left(- x^{3} \cos{\left(x \right)} - 18 x^{2} \sin{\left(x \right)} + 90 x \cos{\left(x \right)} + 120 \sin{\left(x \right)}\right)$$