Integral of x(tanx)^2 dx
The solution
The answer (Indefinite)
[src]
/
| 2 / 2 \
| 2 x log\1 + tan (x)/
| x*tan (x) dx = C - -- - ---------------- + x*tan(x)
| 2 2
/
∫xtan2(x)dx=C−2x2+xtan(x)−2log(tan2(x)+1)
The graph
/ 2 \
1 log\1 + tan (1)/
- - - ---------------- + tan(1)
2 2
−2log(1+tan2(1))−21+tan(1)
=
/ 2 \
1 log\1 + tan (1)/
- - - ---------------- + tan(1)
2 2
−2log(1+tan2(1))−21+tan(1)
-1/2 - log(1 + tan(1)^2)/2 + tan(1)
Use the examples entering the upper and lower limits of integration.