Integral of 4*x*tan(x)^2 dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫4xtan2(x)dx=4∫xtan2(x)dx
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=tan2(x).
Then du(x)=1.
To find v(x):
-
Rewrite the integrand:
tan2(x)=sec2(x)−1
-
Integrate term-by-term:
-
∫sec2(x)dx=tan(x)
-
The integral of a constant is the constant times the variable of integration:
∫(−1)dx=−x
The result is: −x+tan(x)
Now evaluate the sub-integral.
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−x)dx=−∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
So, the result is: −2x2
-
Rewrite the integrand:
tan(x)=cos(x)sin(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u1du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u1)du=−∫u1du
-
The integral of u1 is log(u).
So, the result is: −log(u)
Now substitute u back in:
−log(cos(x))
The result is: −2x2−log(cos(x))
So, the result is: 2x2+4x(−x+tan(x))+4log(cos(x))
-
Now simplify:
−2x2+4xtan(x)+4log(cos(x))
-
Add the constant of integration:
−2x2+4xtan(x)+4log(cos(x))+constant
The answer is:
−2x2+4xtan(x)+4log(cos(x))+constant
The answer (Indefinite)
[src]
/
|
| 2 2
| 4*x*tan (x) dx = C + 2*x + 4*log(cos(x)) + 4*x*(-x + tan(x))
|
/
2sin2(2x)+2cos2(2x)+4cos(2x)+24((sin2(2x)+cos2(2x)+2cos(2x)+1)log(sin2(2x)+cos2(2x)+2cos(2x)+1)−x2sin2(2x)+4xsin(2x)−x2cos2(2x)−2x2cos(2x)−x2)
The graph
2 ___
7*pi 4*pi*\/ 3
-pi - 2*log(4) + 2*log(2) - ----- + ----------
72 3
−π−2log(4)−727π2+2log(2)+343π
=
2 ___
7*pi 4*pi*\/ 3
-pi - 2*log(4) + 2*log(2) - ----- + ----------
72 3
−π−2log(4)−727π2+2log(2)+343π
Use the examples entering the upper and lower limits of integration.