Mister Exam

Other calculators


x^2e^(-x^4+4)

You entered:

x^2e^(-x^4+4)

What you mean?

Integral of x^2e^(-x^4+4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |         4       
 |   2  - x  + 4   
 |  x *e         dx
 |                 
/                  
0                  
$$\int\limits_{0}^{1} x^{2} e^{4 - x^{4}}\, dx$$
Integral(x^2*E^(-x^4 + 4), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                         
 |                                                          
 |        4                 4                      /      4\
 |  2  - x  + 4          3*e *Gamma(3/4)*lowergamma\3/4, x /
 | x *e         dx = C + -----------------------------------
 |                                  16*Gamma(7/4)           
/                                                           
$$-{{e^4\,\Gamma\left({{3}\over{4}} , x^4\right)\,x}\over{4\,\left| x \right| }}$$
The graph
The answer [src]
   4                  4           
  e *Gamma(3/4, 1)   e *Gamma(3/4)
- ---------------- + -------------
         4                 4      
$${{e^4\,\Gamma\left({{3}\over{4}}\right)}\over{4}}-{{e^4\,\Gamma \left({{3}\over{4}} , 1\right)}\over{4}}$$
=
=
   4                  4           
  e *Gamma(3/4, 1)   e *Gamma(3/4)
- ---------------- + -------------
         4                 4      
$$- \frac{e^{4} \Gamma\left(\frac{3}{4}, 1\right)}{4} + \frac{e^{4} \Gamma\left(\frac{3}{4}\right)}{4}$$
Numerical answer [src]
12.3771807034838
12.3771807034838
The graph
Integral of x^2e^(-x^4+4) dx

    Use the examples entering the upper and lower limits of integration.