Mister Exam

Other calculators


x^2cos2x

Integral of x^2cos2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |   2            
 |  x *cos(2*x) dx
 |                
/                 
0                 
01x2cos(2x)dx\int\limits_{0}^{1} x^{2} \cos{\left(2 x \right)}\, dx
Integral(x^2*cos(2*x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=x2u{\left(x \right)} = x^{2} and let dv(x)=cos(2x)\operatorname{dv}{\left(x \right)} = \cos{\left(2 x \right)}.

    Then du(x)=2x\operatorname{du}{\left(x \right)} = 2 x.

    To find v(x)v{\left(x \right)}:

    1. Let u=2xu = 2 x.

      Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

      cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

        1. The integral of cosine is sine:

          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

        So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

      Now substitute uu back in:

      sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

    Now evaluate the sub-integral.

  2. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=xu{\left(x \right)} = x and let dv(x)=sin(2x)\operatorname{dv}{\left(x \right)} = \sin{\left(2 x \right)}.

    Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

    To find v(x)v{\left(x \right)}:

    1. There are multiple ways to do this integral.

      Method #1

      1. Let u=2xu = 2 x.

        Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

        sin(u)2du\int \frac{\sin{\left(u \right)}}{2}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          sin(u)du=sin(u)du2\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{2}

          1. The integral of sine is negative cosine:

            sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

          So, the result is: cos(u)2- \frac{\cos{\left(u \right)}}{2}

        Now substitute uu back in:

        cos(2x)2- \frac{\cos{\left(2 x \right)}}{2}

      Method #2

      1. The integral of a constant times a function is the constant times the integral of the function:

        2sin(x)cos(x)dx=2sin(x)cos(x)dx\int 2 \sin{\left(x \right)} \cos{\left(x \right)}\, dx = 2 \int \sin{\left(x \right)} \cos{\left(x \right)}\, dx

        1. There are multiple ways to do this integral.

          Method #1

          1. Let u=cos(x)u = \cos{\left(x \right)}.

            Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

            (u)du\int \left(- u\right)\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              udu=udu\int u\, du = - \int u\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                udu=u22\int u\, du = \frac{u^{2}}{2}

              So, the result is: u22- \frac{u^{2}}{2}

            Now substitute uu back in:

            cos2(x)2- \frac{\cos^{2}{\left(x \right)}}{2}

          Method #2

          1. Let u=sin(x)u = \sin{\left(x \right)}.

            Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

            udu\int u\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              udu=u22\int u\, du = \frac{u^{2}}{2}

            Now substitute uu back in:

            sin2(x)2\frac{\sin^{2}{\left(x \right)}}{2}

        So, the result is: cos2(x)- \cos^{2}{\left(x \right)}

    Now evaluate the sub-integral.

  3. The integral of a constant times a function is the constant times the integral of the function:

    (cos(2x)2)dx=cos(2x)dx2\int \left(- \frac{\cos{\left(2 x \right)}}{2}\right)\, dx = - \frac{\int \cos{\left(2 x \right)}\, dx}{2}

    1. Let u=2xu = 2 x.

      Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

      cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

        1. The integral of cosine is sine:

          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

        So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

      Now substitute uu back in:

      sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

    So, the result is: sin(2x)4- \frac{\sin{\left(2 x \right)}}{4}

  4. Add the constant of integration:

    x2sin(2x)2+xcos(2x)2sin(2x)4+constant\frac{x^{2} \sin{\left(2 x \right)}}{2} + \frac{x \cos{\left(2 x \right)}}{2} - \frac{\sin{\left(2 x \right)}}{4}+ \mathrm{constant}


The answer is:

x2sin(2x)2+xcos(2x)2sin(2x)4+constant\frac{x^{2} \sin{\left(2 x \right)}}{2} + \frac{x \cos{\left(2 x \right)}}{2} - \frac{\sin{\left(2 x \right)}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                        
 |                                               2         
 |  2                   sin(2*x)   x*cos(2*x)   x *sin(2*x)
 | x *cos(2*x) dx = C - -------- + ---------- + -----------
 |                         4           2             2     
/                                                          
x2cos(2x)dx=C+x2sin(2x)2+xcos(2x)2sin(2x)4\int x^{2} \cos{\left(2 x \right)}\, dx = C + \frac{x^{2} \sin{\left(2 x \right)}}{2} + \frac{x \cos{\left(2 x \right)}}{2} - \frac{\sin{\left(2 x \right)}}{4}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.5-0.5
The answer [src]
cos(2)   sin(2)
------ + ------
  2        4   
cos(2)2+sin(2)4\frac{\cos{\left(2 \right)}}{2} + \frac{\sin{\left(2 \right)}}{4}
=
=
cos(2)   sin(2)
------ + ------
  2        4   
cos(2)2+sin(2)4\frac{\cos{\left(2 \right)}}{2} + \frac{\sin{\left(2 \right)}}{4}
cos(2)/2 + sin(2)/4
Numerical answer [src]
0.0192509384328492
0.0192509384328492
The graph
Integral of x^2cos2x dx

    Use the examples entering the upper and lower limits of integration.