Mister Exam

Integral of cos(ln(2x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |  cos(log(2*x)) dx
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \cos{\left(\log{\left(2 x \right)} \right)}\, dx$$
Integral(cos(log(2*x)), (x, 0, 1))
The answer (Indefinite) [src]
$${{x\,\left(\sin \log \left(2\,x\right)+\cos \log \left(2\,x\right) \right)}\over{2}}$$
The answer [src]
  1                 
  /                 
 |                  
 |  cos(log(2*x)) dx
 |                  
/                   
0                   
$${{\sin \log 2+\cos \log 2}\over{2}}$$
=
=
  1                 
  /                 
 |                  
 |  cos(log(2*x)) dx
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \cos{\left(\log{\left(2 x \right)} \right)}\, dx$$
Numerical answer [src]
0.704100088838803
0.704100088838803

    Use the examples entering the upper and lower limits of integration.