Integral of cos(ln(2x)) dx
The solution
The answer (Indefinite)
[src]
$${{x\,\left(\sin \log \left(2\,x\right)+\cos \log \left(2\,x\right)
\right)}\over{2}}$$
1
/
|
| cos(log(2*x)) dx
|
/
0
$${{\sin \log 2+\cos \log 2}\over{2}}$$
=
1
/
|
| cos(log(2*x)) dx
|
/
0
$$\int\limits_{0}^{1} \cos{\left(\log{\left(2 x \right)} \right)}\, dx$$
Use the examples entering the upper and lower limits of integration.