Mister Exam

Other calculators

Integral of xsqrt(1-x)/lnx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |      _______   
 |  x*\/ 1 - x    
 |  ----------- dx
 |     log(x)     
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{x \sqrt{1 - x}}{\log{\left(x \right)}}\, dx$$
Integral((x*sqrt(1 - x))/log(x), (x, 0, 1))
The answer (Indefinite) [src]
  /                       /              
 |                       |               
 |     _______           |     _______   
 | x*\/ 1 - x            | x*\/ 1 - x    
 | ----------- dx = C +  | ----------- dx
 |    log(x)             |    log(x)     
 |                       |               
/                       /                
$$\int \frac{x \sqrt{1 - x}}{\log{\left(x \right)}}\, dx = C + \int \frac{x \sqrt{1 - x}}{\log{\left(x \right)}}\, dx$$
Numerical answer [src]
-1.18529691119332
-1.18529691119332

    Use the examples entering the upper and lower limits of integration.