Integral of xsinxydy dy
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫yxsin(x)dy=xsin(x)∫ydy
-
The integral of yn is n+1yn+1 when n=−1:
∫ydy=2y2
So, the result is: 2xy2sin(x)
-
Add the constant of integration:
2xy2sin(x)+constant
The answer is:
2xy2sin(x)+constant
The answer (Indefinite)
[src]
/ 2
| x*y *sin(x)
| x*sin(x)*y dy = C + -----------
| 2
/
∫yxsin(x)dy=C+2xy2sin(x)
2
x*pi *sin(x)
------------
2
2π2xsin(x)
=
2
x*pi *sin(x)
------------
2
2π2xsin(x)
Use the examples entering the upper and lower limits of integration.