Mister Exam

Other calculators


xsinx^2/2x^2+4dx

Integral of xsinx^2/2x^2+4dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |  /     2          \   
 |  |x*sin (x)  2    |   
 |  |---------*x  + 4| dx
 |  \    2           /   
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \left(x^{2} \frac{x \sin^{2}{\left(x \right)}}{2} + 4\right)\, dx$$
Integral(((x*sin(x)^2)/2)*x^2 + 4, (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                                                                                          
 |                                                                                                                                           
 | /     2          \                     2         2    2       4    2       4    2         2    2       3                                  
 | |x*sin (x)  2    |                3*sin (x)   3*x *cos (x)   x *cos (x)   x *sin (x)   3*x *sin (x)   x *cos(x)*sin(x)   3*x*cos(x)*sin(x)
 | |---------*x  + 4| dx = C + 4*x - --------- - ------------ + ---------- + ---------- + ------------ - ---------------- + -----------------
 | \    2           /                    16           16            16           16            16               4                   8        
 |                                                                                                                                           
/                                                                                                                                            
$$\int \left(x^{2} \frac{x \sin^{2}{\left(x \right)}}{2} + 4\right)\, dx = C + \frac{x^{4} \sin^{2}{\left(x \right)}}{16} + \frac{x^{4} \cos^{2}{\left(x \right)}}{16} - \frac{x^{3} \sin{\left(x \right)} \cos{\left(x \right)}}{4} + \frac{3 x^{2} \sin^{2}{\left(x \right)}}{16} - \frac{3 x^{2} \cos^{2}{\left(x \right)}}{16} + \frac{3 x \sin{\left(x \right)} \cos{\left(x \right)}}{8} + 4 x - \frac{3 \sin^{2}{\left(x \right)}}{16}$$
The graph
The answer [src]
       2         2                   
    cos (1)   sin (1)   cos(1)*sin(1)
4 - ------- + ------- + -------------
       8         16           8      
$$- \frac{\cos^{2}{\left(1 \right)}}{8} + \frac{\sin^{2}{\left(1 \right)}}{16} + \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{8} + 4$$
=
=
       2         2                   
    cos (1)   sin (1)   cos(1)*sin(1)
4 - ------- + ------- + -------------
       8         16           8      
$$- \frac{\cos^{2}{\left(1 \right)}}{8} + \frac{\sin^{2}{\left(1 \right)}}{16} + \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{8} + 4$$
4 - cos(1)^2/8 + sin(1)^2/16 + cos(1)*sin(1)/8
Numerical answer [src]
4.0645948551029
4.0645948551029
The graph
Integral of xsinx^2/2x^2+4dx dx

    Use the examples entering the upper and lower limits of integration.