Mister Exam

Other calculators


-exp(-3*x)

Integral of -exp(-3*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |    -3*x   
 |  -e     dx
 |           
/            
0            
$$\int\limits_{0}^{1} \left(- e^{- 3 x}\right)\, dx$$
Integral(-exp(-3*x), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of the exponential function is itself.

        So, the result is:

      Now substitute back in:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                     
 |                  -3*x
 |   -3*x          e    
 | -e     dx = C + -----
 |                   3  
/                       
$$\int \left(- e^{- 3 x}\right)\, dx = C + \frac{e^{- 3 x}}{3}$$
The graph
The answer [src]
       -3
  1   e  
- - + ---
  3    3 
$$- \frac{1}{3} + \frac{1}{3 e^{3}}$$
=
=
       -3
  1   e  
- - + ---
  3    3 
$$- \frac{1}{3} + \frac{1}{3 e^{3}}$$
-1/3 + exp(-3)/3
Numerical answer [src]
-0.316737643877379
-0.316737643877379
The graph
Integral of -exp(-3*x) dx

    Use the examples entering the upper and lower limits of integration.