Mister Exam

Other calculators

Integral of (sin(5x))*(sin(x/2)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |              /x\   
 |  sin(5*x)*sin|-| dx
 |              \2/   
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \sin{\left(5 x \right)} \sin{\left(\frac{x}{2} \right)}\, dx$$
Integral(sin(5*x)*sin(x/2), (x, 0, 1))
The graph
The answer [src]
  20*cos(5)*sin(1/2)   2*cos(1/2)*sin(5)
- ------------------ + -----------------
          99                   99       
$$- \frac{20 \sin{\left(\frac{1}{2} \right)} \cos{\left(5 \right)}}{99} + \frac{2 \sin{\left(5 \right)} \cos{\left(\frac{1}{2} \right)}}{99}$$
=
=
  20*cos(5)*sin(1/2)   2*cos(1/2)*sin(5)
- ------------------ + -----------------
          99                   99       
$$- \frac{20 \sin{\left(\frac{1}{2} \right)} \cos{\left(5 \right)}}{99} + \frac{2 \sin{\left(5 \right)} \cos{\left(\frac{1}{2} \right)}}{99}$$
-20*cos(5)*sin(1/2)/99 + 2*cos(1/2)*sin(5)/99
Numerical answer [src]
-0.0444744279210358
-0.0444744279210358

    Use the examples entering the upper and lower limits of integration.