Mister Exam

Other calculators

Integral of xsinx/(1+cosx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |   x*sin(x)    
 |  ---------- dx
 |  1 + cos(x)   
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{x \sin{\left(x \right)}}{\cos{\left(x \right)} + 1}\, dx$$
Integral((x*sin(x))/(1 + cos(x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                      /             
 |                      |              
 |  x*sin(x)            |  x*sin(x)    
 | ---------- dx = C +  | ---------- dx
 | 1 + cos(x)           | 1 + cos(x)   
 |                      |              
/                      /               
$$\int \frac{x \sin{\left(x \right)}}{\cos{\left(x \right)} + 1}\, dx = C + \int \frac{x \sin{\left(x \right)}}{\cos{\left(x \right)} + 1}\, dx$$
The answer [src]
  1              
  /              
 |               
 |   x*sin(x)    
 |  ---------- dx
 |  1 + cos(x)   
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{x \sin{\left(x \right)}}{\cos{\left(x \right)} + 1}\, dx$$
=
=
  1              
  /              
 |               
 |   x*sin(x)    
 |  ---------- dx
 |  1 + cos(x)   
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{x \sin{\left(x \right)}}{\cos{\left(x \right)} + 1}\, dx$$
Integral(x*sin(x)/(1 + cos(x)), (x, 0, 1))
Numerical answer [src]
0.175646333625813
0.175646333625813

    Use the examples entering the upper and lower limits of integration.