Mister Exam

Integral of xsin(5x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo              
  /              
 |               
 |  x*sin(5*x) dx
 |               
/                
1                
1xsin(5x)dx\int\limits_{1}^{\infty} x \sin{\left(5 x \right)}\, dx
Integral(x*sin(5*x), (x, 1, oo))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=xu{\left(x \right)} = x and let dv(x)=sin(5x)\operatorname{dv}{\left(x \right)} = \sin{\left(5 x \right)}.

    Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

    To find v(x)v{\left(x \right)}:

    1. Let u=5xu = 5 x.

      Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

      sin(u)5du\int \frac{\sin{\left(u \right)}}{5}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin(u)du=sin(u)du5\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{5}

        1. The integral of sine is negative cosine:

          sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

        So, the result is: cos(u)5- \frac{\cos{\left(u \right)}}{5}

      Now substitute uu back in:

      cos(5x)5- \frac{\cos{\left(5 x \right)}}{5}

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    (cos(5x)5)dx=cos(5x)dx5\int \left(- \frac{\cos{\left(5 x \right)}}{5}\right)\, dx = - \frac{\int \cos{\left(5 x \right)}\, dx}{5}

    1. Let u=5xu = 5 x.

      Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

      cos(u)5du\int \frac{\cos{\left(u \right)}}{5}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos(u)du=cos(u)du5\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{5}

        1. The integral of cosine is sine:

          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

        So, the result is: sin(u)5\frac{\sin{\left(u \right)}}{5}

      Now substitute uu back in:

      sin(5x)5\frac{\sin{\left(5 x \right)}}{5}

    So, the result is: sin(5x)25- \frac{\sin{\left(5 x \right)}}{25}

  3. Add the constant of integration:

    xcos(5x)5+sin(5x)25+constant- \frac{x \cos{\left(5 x \right)}}{5} + \frac{\sin{\left(5 x \right)}}{25}+ \mathrm{constant}


The answer is:

xcos(5x)5+sin(5x)25+constant- \frac{x \cos{\left(5 x \right)}}{5} + \frac{\sin{\left(5 x \right)}}{25}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                         
 |                     sin(5*x)   x*cos(5*x)
 | x*sin(5*x) dx = C + -------- - ----------
 |                        25          5     
/                                           
xsin(5x)dx=Cxcos(5x)5+sin(5x)25\int x \sin{\left(5 x \right)}\, dx = C - \frac{x \cos{\left(5 x \right)}}{5} + \frac{\sin{\left(5 x \right)}}{25}
The graph
1.00001.01001.00101.00201.00301.00401.00501.00601.00701.00801.0090-1.00.0
The answer [src]
 oo              
  /              
 |               
 |  x*sin(5*x) dx
 |               
/                
1                
1xsin(5x)dx\int\limits_{1}^{\infty} x \sin{\left(5 x \right)}\, dx
=
=
 oo              
  /              
 |               
 |  x*sin(5*x) dx
 |               
/                
1                
1xsin(5x)dx\int\limits_{1}^{\infty} x \sin{\left(5 x \right)}\, dx
Integral(x*sin(5*x), (x, 1, oo))

    Use the examples entering the upper and lower limits of integration.