Mister Exam

Derivative of xsin(5x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x*sin(5*x)
xsin(5x)x \sin{\left(5 x \right)}
x*sin(5*x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: xx goes to 11

    g(x)=sin(5x)g{\left(x \right)} = \sin{\left(5 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=5xu = 5 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 55

      The result of the chain rule is:

      5cos(5x)5 \cos{\left(5 x \right)}

    The result is: 5xcos(5x)+sin(5x)5 x \cos{\left(5 x \right)} + \sin{\left(5 x \right)}


The answer is:

5xcos(5x)+sin(5x)5 x \cos{\left(5 x \right)} + \sin{\left(5 x \right)}

The graph
02468-8-6-4-2-1010-100100
The first derivative [src]
5*x*cos(5*x) + sin(5*x)
5xcos(5x)+sin(5x)5 x \cos{\left(5 x \right)} + \sin{\left(5 x \right)}
The second derivative [src]
5*(2*cos(5*x) - 5*x*sin(5*x))
5(5xsin(5x)+2cos(5x))5 \left(- 5 x \sin{\left(5 x \right)} + 2 \cos{\left(5 x \right)}\right)
The third derivative [src]
-25*(3*sin(5*x) + 5*x*cos(5*x))
25(5xcos(5x)+3sin(5x))- 25 \left(5 x \cos{\left(5 x \right)} + 3 \sin{\left(5 x \right)}\right)
The graph
Derivative of xsin(5x)