Mister Exam

Other calculators


x×sin4x^2dx

Integral of x×sin4x^2dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |       2          
 |  x*sin (4*x)*1 dx
 |                  
/                   
0                   
$$\int\limits_{0}^{1} x \sin^{2}{\left(4 x \right)} 1\, dx$$
Integral(x*sin(4*x)^2*1, (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      The result is:

    Now evaluate the sub-integral.

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of sine is negative cosine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                       
 |                         2                              
 |      2                 x    cos(8*x)     /x   sin(8*x)\
 | x*sin (4*x)*1 dx = C - -- - -------- + x*|- - --------|
 |                        4      128        \2      16   /
/                                                         
$$-{{8\,x\,\sin \left(8\,x\right)+\cos \left(8\,x\right)-32\,x^2 }\over{128}}$$
The graph
The answer [src]
   2            2                   
cos (4)   17*sin (4)   cos(4)*sin(4)
------- + ---------- - -------------
   4          64             8      
$${{1}\over{128}}-{{8\,\sin 8+\cos 8-32}\over{128}}$$
=
=
   2            2                   
cos (4)   17*sin (4)   cos(4)*sin(4)
------- + ---------- - -------------
   4          64             8      
$$- \frac{\sin{\left(4 \right)} \cos{\left(4 \right)}}{8} + \frac{\cos^{2}{\left(4 \right)}}{4} + \frac{17 \sin^{2}{\left(4 \right)}}{64}$$
Numerical answer [src]
0.197114328600168
0.197114328600168
The graph
Integral of x×sin4x^2dx dx

    Use the examples entering the upper and lower limits of integration.