Mister Exam

Integral of (x+2)sin3x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |  (x + 2)*sin(3*x) dx
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \left(x + 2\right) \sin{\left(3 x \right)}\, dx$$
Integral((x + 2)*sin(3*x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Use integration by parts:

        Let and let .

        Then .

        To find :

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of sine is negative cosine:

            So, the result is:

          Now substitute back in:

        Now evaluate the sub-integral.

      2. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of sine is negative cosine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      The result is:

    Method #2

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of sine is negative cosine:

          So, the result is:

        Now substitute back in:

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Use integration by parts:

        Let and let .

        Then .

        To find :

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of sine is negative cosine:

            So, the result is:

          Now substitute back in:

        Now evaluate the sub-integral.

      2. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of sine is negative cosine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                            
 |                           2*cos(3*x)   sin(3*x)   x*cos(3*x)
 | (x + 2)*sin(3*x) dx = C - ---------- + -------- - ----------
 |                               3           9           3     
/                                                              
$$\int \left(x + 2\right) \sin{\left(3 x \right)}\, dx = C - \frac{x \cos{\left(3 x \right)}}{3} + \frac{\sin{\left(3 x \right)}}{9} - \frac{2 \cos{\left(3 x \right)}}{3}$$
The graph
The answer [src]
2            sin(3)
- - cos(3) + ------
3              9   
$$\frac{\sin{\left(3 \right)}}{9} + \frac{2}{3} - \cos{\left(3 \right)}$$
=
=
2            sin(3)
- - cos(3) + ------
3              9   
$$\frac{\sin{\left(3 \right)}}{9} + \frac{2}{3} - \cos{\left(3 \right)}$$
2/3 - cos(3) + sin(3)/9
Numerical answer [src]
1.67233916416265
1.67233916416265
The graph
Integral of (x+2)sin3x dx

    Use the examples entering the upper and lower limits of integration.