1 / | | x + 2 | ---------- dx | 2 | x + x + 1 | / 0
Integral((x + 2)/(x^2 + x + 1), (x, 0, 1))
/ | | x + 2 | ---------- dx | 2 | x + x + 1 | /
/ 2*x + 1 \
|----------| / 3 \
| 2 | |-----|
x + 2 \x + x + 1/ \2*3/4/
---------- = ------------ + -------------------------
2 2 2
x + x + 1 / ___ ___\
|-2*\/ 3 \/ 3 |
|--------*x - -----| + 1
\ 3 3 / / | | x + 2 | ---------- dx | 2 = | x + x + 1 | /
/
|
| 2*x + 1
| ---------- dx
| 2
| x + x + 1 /
| |
/ | 1
---------------- + 2* | ------------------------- dx
2 | 2
| / ___ ___\
| |-2*\/ 3 \/ 3 |
| |--------*x - -----| + 1
| \ 3 3 /
|
/ /
|
| 2*x + 1
| ---------- dx
| 2
| x + x + 1
|
/
----------------
2 2 u = x + x
/
|
| 1
| ----- du
| 1 + u
|
/ log(1 + u)
----------- = ----------
2 2 /
|
| 2*x + 1
| ---------- dx
| 2
| x + x + 1
| / 2\
/ log\1 + x + x /
---------------- = ---------------
2 2 / | | 1 2* | ------------------------- dx | 2 | / ___ ___\ | |-2*\/ 3 \/ 3 | | |--------*x - -----| + 1 | \ 3 3 / | /
___ ___
\/ 3 2*x*\/ 3
v = - ----- - ---------
3 3 / | | 1 2* | ------ dv = 2*atan(v) | 2 | 1 + v | /
/ | / ___ ___\ | 1 ___ |\/ 3 2*x*\/ 3 | 2* | ------------------------- dx = \/ 3 *atan|----- + ---------| | 2 \ 3 3 / | / ___ ___\ | |-2*\/ 3 \/ 3 | | |--------*x - -----| + 1 | \ 3 3 / | /
/ 2\ / ___ ___\
log\1 + x + x / ___ |\/ 3 2*x*\/ 3 |
C + --------------- + \/ 3 *atan|----- + ---------|
2 \ 3 3 // | / 2\ / ___ \ | x + 2 log\1 + x + x / ___ |2*\/ 3 *(1/2 + x)| | ---------- dx = C + --------------- + \/ 3 *atan|-----------------| | 2 2 \ 3 / | x + x + 1 | /
___ log(3) pi*\/ 3 ------ + -------- 2 6
=
___ log(3) pi*\/ 3 ------ + -------- 2 6
log(3)/2 + pi*sqrt(3)/6
Use the examples entering the upper and lower limits of integration.