Mister Exam

Other calculators


(x+3)/(x-4)

Integral of (x+3)/(x-4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1         
  /         
 |          
 |  x + 3   
 |  ----- dx
 |  x - 4   
 |          
/           
0           
01x+3x4dx\int\limits_{0}^{1} \frac{x + 3}{x - 4}\, dx
Integral((x + 3)/(x - 4), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      x+3x4=1+7x4\frac{x + 3}{x - 4} = 1 + \frac{7}{x - 4}

    2. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

        1dx=x\int 1\, dx = x

      1. The integral of a constant times a function is the constant times the integral of the function:

        7x4dx=71x4dx\int \frac{7}{x - 4}\, dx = 7 \int \frac{1}{x - 4}\, dx

        1. Let u=x4u = x - 4.

          Then let du=dxdu = dx and substitute dudu:

          1udu\int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(x4)\log{\left(x - 4 \right)}

        So, the result is: 7log(x4)7 \log{\left(x - 4 \right)}

      The result is: x+7log(x4)x + 7 \log{\left(x - 4 \right)}

    Method #2

    1. Rewrite the integrand:

      x+3x4=xx4+3x4\frac{x + 3}{x - 4} = \frac{x}{x - 4} + \frac{3}{x - 4}

    2. Integrate term-by-term:

      1. Rewrite the integrand:

        xx4=1+4x4\frac{x}{x - 4} = 1 + \frac{4}{x - 4}

      2. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

          1dx=x\int 1\, dx = x

        1. The integral of a constant times a function is the constant times the integral of the function:

          4x4dx=41x4dx\int \frac{4}{x - 4}\, dx = 4 \int \frac{1}{x - 4}\, dx

          1. Let u=x4u = x - 4.

            Then let du=dxdu = dx and substitute dudu:

            1udu\int \frac{1}{u}\, du

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            Now substitute uu back in:

            log(x4)\log{\left(x - 4 \right)}

          So, the result is: 4log(x4)4 \log{\left(x - 4 \right)}

        The result is: x+4log(x4)x + 4 \log{\left(x - 4 \right)}

      1. The integral of a constant times a function is the constant times the integral of the function:

        3x4dx=31x4dx\int \frac{3}{x - 4}\, dx = 3 \int \frac{1}{x - 4}\, dx

        1. Let u=x4u = x - 4.

          Then let du=dxdu = dx and substitute dudu:

          1udu\int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(x4)\log{\left(x - 4 \right)}

        So, the result is: 3log(x4)3 \log{\left(x - 4 \right)}

      The result is: x+3log(x4)+4log(x4)x + 3 \log{\left(x - 4 \right)} + 4 \log{\left(x - 4 \right)}

  2. Add the constant of integration:

    x+7log(x4)+constantx + 7 \log{\left(x - 4 \right)}+ \mathrm{constant}


The answer is:

x+7log(x4)+constantx + 7 \log{\left(x - 4 \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                
 |                                 
 | x + 3                           
 | ----- dx = C + x + 7*log(-4 + x)
 | x - 4                           
 |                                 
/                                  
x+3x4dx=C+x+7log(x4)\int \frac{x + 3}{x - 4}\, dx = C + x + 7 \log{\left(x - 4 \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-1.5-0.5
The answer [src]
1 - 7*log(4) + 7*log(3)
7log(4)+1+7log(3)- 7 \log{\left(4 \right)} + 1 + 7 \log{\left(3 \right)}
=
=
1 - 7*log(4) + 7*log(3)
7log(4)+1+7log(3)- 7 \log{\left(4 \right)} + 1 + 7 \log{\left(3 \right)}
1 - 7*log(4) + 7*log(3)
Numerical answer [src]
-1.01377450716247
-1.01377450716247
The graph
Integral of (x+3)/(x-4) dx

    Use the examples entering the upper and lower limits of integration.