Integral of (x+1)^2*ln^2(x) dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=log(x).
Then let du=xdx and substitute du:
∫(u2e3u+2u2e2u+u2eu)du
-
Integrate term-by-term:
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u2 and let dv(u)=e3u.
Then du(u)=2u.
To find v(u):
-
There are multiple ways to do this integral.
Method #1
-
Let u=3u.
Then let du=3du and substitute 3du:
∫9eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫3eudu=3∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 3eu
Now substitute u back in:
3e3u
Method #2
-
Let u=e3u.
Then let du=3e3udu and substitute 3du:
∫91du
-
The integral of a constant times a function is the constant times the integral of the function:
∫31du=3∫1du
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
So, the result is: 3u
Now substitute u back in:
3e3u
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=32u and let dv(u)=e3u.
Then du(u)=32.
To find v(u):
-
Let u=3u.
Then let du=3du and substitute 3du:
∫9eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫3eudu=3∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 3eu
Now substitute u back in:
3e3u
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫92e3udu=92∫e3udu
-
Let u=3u.
Then let du=3du and substitute 3du:
∫9eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫3eudu=3∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 3eu
Now substitute u back in:
3e3u
So, the result is: 272e3u
-
The integral of a constant times a function is the constant times the integral of the function:
∫2u2e2udu=2∫u2e2udu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u2 and let dv(u)=e2u.
Then du(u)=2u.
To find v(u):
-
Let u=2u.
Then let du=2du and substitute 2du:
∫4eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫2eudu=2∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u and let dv(u)=e2u.
Then du(u)=1.
To find v(u):
-
Let u=2u.
Then let du=2du and substitute 2du:
∫4eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫2eudu=2∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2e2udu=2∫e2udu
-
Let u=2u.
Then let du=2du and substitute 2du:
∫4eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫2eudu=2∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
So, the result is: 4e2u
So, the result is: u2e2u−ue2u+2e2u
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u2 and let dv(u)=eu.
Then du(u)=2u.
To find v(u):
-
The integral of the exponential function is itself.
∫eudu=eu
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=2u and let dv(u)=eu.
Then du(u)=2.
To find v(u):
-
The integral of the exponential function is itself.
∫eudu=eu
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2eudu=2∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
The result is: 3u2e3u+u2e2u+u2eu−92ue3u−ue2u−2ueu+272e3u+2e2u+2eu
Now substitute u back in:
3x3log(x)2−92x3log(x)+272x3+x2log(x)2−x2log(x)+2x2+xlog(x)2−2xlog(x)+2x
Method #2
-
Rewrite the integrand:
(x+1)2log(x)2=x2log(x)2+2xlog(x)2+log(x)2
-
Integrate term-by-term:
-
Let u=log(x).
Then let du=xdx and substitute du:
∫u2e3udu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u2 and let dv(u)=e3u.
Then du(u)=2u.
To find v(u):
-
Let u=3u.
Then let du=3du and substitute 3du:
∫9eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫3eudu=3∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 3eu
Now substitute u back in:
3e3u
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=32u and let dv(u)=e3u.
Then du(u)=32.
To find v(u):
-
Let u=3u.
Then let du=3du and substitute 3du:
∫9eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫3eudu=3∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 3eu
Now substitute u back in:
3e3u
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫92e3udu=92∫e3udu
-
Let u=3u.
Then let du=3du and substitute 3du:
∫9eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫3eudu=3∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 3eu
Now substitute u back in:
3e3u
So, the result is: 272e3u
Now substitute u back in:
3x3log(x)2−92x3log(x)+272x3
-
The integral of a constant times a function is the constant times the integral of the function:
∫2xlog(x)2dx=2∫xlog(x)2dx
-
Let u=log(x).
Then let du=xdx and substitute du:
∫u2e2udu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u2 and let dv(u)=e2u.
Then du(u)=2u.
To find v(u):
-
Let u=2u.
Then let du=2du and substitute 2du:
∫4eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫2eudu=2∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u and let dv(u)=e2u.
Then du(u)=1.
To find v(u):
-
Let u=2u.
Then let du=2du and substitute 2du:
∫4eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫2eudu=2∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2e2udu=2∫e2udu
-
Let u=2u.
Then let du=2du and substitute 2du:
∫4eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫2eudu=2∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
So, the result is: 4e2u
Now substitute u back in:
2x2log(x)2−2x2log(x)+4x2
So, the result is: x2log(x)2−x2log(x)+2x2
-
Let u=log(x).
Then let du=xdx and substitute du:
∫u2eudu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u2 and let dv(u)=eu.
Then du(u)=2u.
To find v(u):
-
The integral of the exponential function is itself.
∫eudu=eu
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=2u and let dv(u)=eu.
Then du(u)=2.
To find v(u):
-
The integral of the exponential function is itself.
∫eudu=eu
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2eudu=2∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
xlog(x)2−2xlog(x)+2x
The result is: 3x3log(x)2−92x3log(x)+272x3+x2log(x)2−x2log(x)+2x2+xlog(x)2−2xlog(x)+2x
Method #3
-
Rewrite the integrand:
(x+1)2log(x)2=x2log(x)2+2xlog(x)2+log(x)2
-
Integrate term-by-term:
-
Let u=log(x).
Then let du=xdx and substitute du:
∫u2e3udu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u2 and let dv(u)=e3u.
Then du(u)=2u.
To find v(u):
-
Let u=3u.
Then let du=3du and substitute 3du:
∫9eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫3eudu=3∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 3eu
Now substitute u back in:
3e3u
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=32u and let dv(u)=e3u.
Then du(u)=32.
To find v(u):
-
Let u=3u.
Then let du=3du and substitute 3du:
∫9eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫3eudu=3∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 3eu
Now substitute u back in:
3e3u
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫92e3udu=92∫e3udu
-
Let u=3u.
Then let du=3du and substitute 3du:
∫9eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫3eudu=3∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 3eu
Now substitute u back in:
3e3u
So, the result is: 272e3u
Now substitute u back in:
3x3log(x)2−92x3log(x)+272x3
-
The integral of a constant times a function is the constant times the integral of the function:
∫2xlog(x)2dx=2∫xlog(x)2dx
-
Let u=log(x).
Then let du=xdx and substitute du:
∫u2e2udu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u2 and let dv(u)=e2u.
Then du(u)=2u.
To find v(u):
-
Let u=2u.
Then let du=2du and substitute 2du:
∫4eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫2eudu=2∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u and let dv(u)=e2u.
Then du(u)=1.
To find v(u):
-
Let u=2u.
Then let du=2du and substitute 2du:
∫4eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫2eudu=2∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2e2udu=2∫e2udu
-
Let u=2u.
Then let du=2du and substitute 2du:
∫4eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫2eudu=2∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
So, the result is: 4e2u
Now substitute u back in:
2x2log(x)2−2x2log(x)+4x2
So, the result is: x2log(x)2−x2log(x)+2x2
-
Let u=log(x).
Then let du=xdx and substitute du:
∫u2eudu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u2 and let dv(u)=eu.
Then du(u)=2u.
To find v(u):
-
The integral of the exponential function is itself.
∫eudu=eu
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=2u and let dv(u)=eu.
Then du(u)=2.
To find v(u):
-
The integral of the exponential function is itself.
∫eudu=eu
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2eudu=2∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
xlog(x)2−2xlog(x)+2x
The result is: 3x3log(x)2−92x3log(x)+272x3+x2log(x)2−x2log(x)+2x2+xlog(x)2−2xlog(x)+2x
-
Now simplify:
54x(18x2log(x)2−12x2log(x)+4x2+54xlog(x)2−54xlog(x)+27x+54log(x)2−108log(x)+108)
-
Add the constant of integration:
54x(18x2log(x)2−12x2log(x)+4x2+54xlog(x)2−54xlog(x)+27x+54log(x)2−108log(x)+108)+constant
The answer is:
54x(18x2log(x)2−12x2log(x)+4x2+54xlog(x)2−54xlog(x)+27x+54log(x)2−108log(x)+108)+constant
The answer (Indefinite)
[src]
/
| 2 3 3 3 2
| 2 2 x 2*x 2 2 2 2 2*x *log(x) x *log (x)
| (x + 1) *log (x) dx = C + -- + 2*x + ---- + x*log (x) + x *log (x) - x *log(x) - 2*x*log(x) - ----------- + ----------
| 2 27 9 3
/
27x3(9(logx)2−6logx+2)+2x2(2(logx)2−2logx+1)+x((logx)2−2logx+2)
54139
=
54139
Use the examples entering the upper and lower limits of integration.