Mister Exam

Other calculators


(x+1)^(1/2)/x

Integral of (x+1)^(1/2)/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |    _______   
 |  \/ x + 1    
 |  --------- dx
 |      x       
 |              
/               
0               
$$\int\limits_{0}^{1} \frac{\sqrt{x + 1}}{x}\, dx$$
Integral(sqrt(x + 1)/x, (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                         
 |                                                                          
 |   _______                                                                
 | \/ x + 1              /      _______\       _______      /       _______\
 | --------- dx = C - log\1 + \/ 1 + x / + 2*\/ 1 + x  + log\-1 + \/ 1 + x /
 |     x                                                                    
 |                                                                          
/                                                                           
$$\int \frac{\sqrt{x + 1}}{x}\, dx = C + 2 \sqrt{x + 1} + \log{\left(\sqrt{x + 1} - 1 \right)} - \log{\left(\sqrt{x + 1} + 1 \right)}$$
The graph
The answer [src]
            /  ___\
oo - 2*acoth\\/ 2 /
$$- 2 \operatorname{acoth}{\left(\sqrt{2} \right)} + \infty$$
=
=
            /  ___\
oo - 2*acoth\\/ 2 /
$$- 2 \operatorname{acoth}{\left(\sqrt{2} \right)} + \infty$$
oo - 2*acoth(sqrt(2))
Numerical answer [src]
44.5424204458199
44.5424204458199
The graph
Integral of (x+1)^(1/2)/x dx

    Use the examples entering the upper and lower limits of integration.