Mister Exam

Other calculators


(x+1)^1/3

Integral of (x+1)^1/3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |  3 _______   
 |  \/ x + 1  dx
 |              
/               
0               
$$\int\limits_{0}^{1} \sqrt[3]{x + 1}\, dx$$
Integral((x + 1)^(1/3), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of is when :

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                             4/3
 | 3 _______          3*(x + 1)   
 | \/ x + 1  dx = C + ------------
 |                         4      
/                                 
$$\int \sqrt[3]{x + 1}\, dx = C + \frac{3 \left(x + 1\right)^{\frac{4}{3}}}{4}$$
The graph
The answer [src]
        3 ___
  3   3*\/ 2 
- - + -------
  4      2   
$$- \frac{3}{4} + \frac{3 \sqrt[3]{2}}{2}$$
=
=
        3 ___
  3   3*\/ 2 
- - + -------
  4      2   
$$- \frac{3}{4} + \frac{3 \sqrt[3]{2}}{2}$$
-3/4 + 3*2^(1/3)/2
Numerical answer [src]
1.13988157484231
1.13988157484231
The graph
Integral of (x+1)^1/3 dx

    Use the examples entering the upper and lower limits of integration.